Approaches and Technologies for Challenges in Agriculture: A View from a Texas Maize Breeding Program

Seth C. Murray

Department of Soil and Crop Sciences Texas A&M University

	Maize in Texas	
2013 Region	Acreage planted	Average yield
High Plains	951,000 acres (855,000 harvested)	204.8 bu/acre
Rest of Texas	1,479,000 acres (1,234,000 harvested)	89.6 bu /acre

Texas 2010 - 300 million bushels = \$1.5 billion (12^{th} in Country)

- Texas 2011 136 million bushels, heat and drought = \$0.9 billion
- Texas 2012 202 million bushels = \$1.46 billion
- Texas 2013 283 million bushels = \$1.36 billion
- Texas 2014 295 million bushels = \$1.31 billion

Texas Acres	2,430,000
Acres per bag of seed	~ 3
Cost per bag of seed	~ \$150
Total \$ on seed	~ \$121 million

Texas maize production

Meta-analysis - minimal genetic yield gain in commercial varieties grown in Texas over the last 11 years

Agronomic traits are more highly correlated with yield in the lower yielding Texas environments

v	0										
Grain yield (tons/ha)											
	Texas	High Plains	Rest of Texas	Dryland							
Plant height (cm)	0.61***	0.19***	0.46^{***}	0.45^{***}							
Ear height (cm)	0.56***	0.03NS	0.40^{***}	0.35***							
Days to silk	0.13***	-0.25***	0.05^{***}	-0.08***							
Plant density (plants/ ha)	0.66***	0.44***	0.51^{***}	0.36***							
Lodging (% plants/ plot)	-0.16***	-0.24***	-0.15***	-0.21***							
Moisture (%)	0.55***	0.04*	0.28^{***}	0.30***							
Test weight (kg/hl)	0.33***	0.04NS	0.45^{***}	0.50***							

 \sim 14,500 individual observations on each trait

 \sim 1,000 commercial hybrids

Barrero et al. 2013, Field Crops Research

Why do we need a public breeding program on corn? Aren't the companies doing this?

- Not targeting Texas or the south a unique adaptation (aflatoxin, heat, drought, etc.)
- Unique traits / exotic introgression colored corn, QPM, perennial corn, high biomass corn
- Graduate student training

 Primarily in industry
- New breeding methods
- Long-term high risk research
 perennials

Most commercial inbred lines are not adapted to Texas heat and drought

> Tx782 X LH287RR2

Tx777

Tx777 x LH195RR2

2013 inbreds and hybrids demonstration

- LH195 x Tx775
- Tx775

Tx773

Tx773 x TR7322

TR7322

Previous phase of public corn breeding at Texas A&M (the last seven to eleven years) – *Corn breeding at A&M started in 1927*

Increasing focus on best yielding lines

	2010	2011	2012	2013	2014	2015
Summer Testers	2	4	15	17	12	5
Summer TAMU lines	646 + 2 ISO	665	278	67	37 + 2 ISO	7 +2 ISO
Winter Testers	2	9	10	19	14	-
Winter TAMU lines	364 + 2 ISO	70	25	33	32	-

Only get yield data in time to make decisions for winter nursery the following year (maybe)

723 hybrids tested in 2012 across six environments

Rank	Hybrid	Bu/ Acre above mean	Std Error	Ρ
1	Tx777 X SS2	51.5	± 11.3	****
2	Tx954 X SS5	49	± 16.8	**
3	Commercial Hybrid #09 (TX company)	46.8	± 5.4	****
4	Commercial Hybrid #08 (TX company)	46.2	± 13.7	***
5	Commercial Hybrid #02 (TX company)	45.1	± 4.8	****
6	Tx114 X Tx120	44	± 14.5	**
7	Commercial Hybrid #04 (National company)	43.3	± 6.7	****
8	Commercial Hybrid #05 (National company)	42.3	± 13.7	**
9	NSS1 X Tx150	40.7	± 11.3	***
10	Tx773 X NSS2	38.1	± 8.9	****
11	SS1 X Tx149	37.5	± 9.6	***
12	DKB 64-69	37.2	± 6.1	****
13	Tx777 X NSS2	37.1	± 9.6	***
14	Tx775 X NSS2	37	± 14.5	*
15	SS1 X Tx904	36	± 14.6	*
16	Commercial Hybrid #11 (TX company)	35.9	± 6.3	****
17	Tx150 X SS4	35.5	± 10.2	***
•	•	•	•	
29	TX740 X SS3	31.9	± 8.9	***
•	•	•	•	
50	Commercial Hybrid #06 (TX company)	26.5	± 6.4	****
•	•	•	•	
56	Commercial Hybrid #10 (National company)	25.6	± 13.7	NS
57	(LAMA2002-22-3-B-B1-B-B/LAMA2002-10-1-B-B-B)-2-3-B-2-1 X SS2	25.4	± 12.4	*
58	Commercial Hybrid #07 (TX company)	24.9	± 13.7	NS
60	TX740 X NSS2	12.6	± 16.8	NS

 Table 1: Grain yield (Bu Ac⁻¹) trial results over 15 trials in 2013.

2013 SERAT yield data from North Carolina out of 37 hybrids including 7 commercial checks

Dr. Matt Krakowsky, USDA- NCSU

Important origins of germplasm to the TAMU Maize Breeding Program

Southern rust resistance

Commercial hybrids from 100% temperate material

TAMU Hybrids with ½ tropical background

Summer yield trials

- Generally seed limited
- <u>2 row- 2rep; 1 row 2rep; 1 row 1rep</u>
- Generally 8 to 12 commercial checks per test
- ~ 20 acres in College Station into ~ 20 tests
- Late planting, limited irrigation treatments
- <u>Combine harvested</u>
- Aflatoxin testing
- <u>Row / column effects are often highly significant</u>

Summer nursery

- \sim 7 acres in College Station into \sim 20 groups
 - <u>Yellows</u>
 - <u>Whites</u>
 - <u>Coloreds</u>
 - <u>Genetics</u>
 - Student projects
- 2 isolation blocks, but very hit or miss

Perennial breeding requires planning

Corn breeding program timeline

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	No	v	Dec
											1		
Prepare Nursery		CS	CS					WE					
Plant Nursery			CS					WE					
Pollinate						CS				WE			
Harvest								CS					WE
Process Seed	WE	WE						CS	CS				
Prepare Yield	WE		CS										
Trials													
Plant Yield Trials		WE	CS	CS									
Agronomics	CS			CS	CS	CS	CS						
Notes				CS	CS	CS							
Inoculate AF					CS								
Harvest						WE		CS					
Grind, NIRS,									CS				
Aflatest													
Analyze Data													

CS = College Station, TX WE= Weslaco, TX

Downtime!

Information management

- In 2012
 - Over 4679 Summer yield trial plots:
 - Yield
 - Stand count
 - Flowering time
 - Height
 - Other traits
 - Some with subsampled grain
 - Summer nursery >6007 seed stocks
 - Weslaco winter nursery (2011) 3584 seed stocks
 - Genotyping results >2000 plants
- Multiplied by 5-10 years of seed in cooler
- Still no single data format we are really happy with

Unadapted germplasm to the Midwest (IA)

50°

Maize ATLAS

Adaptation Through Latitudinal Artificial Selection

Design, Simulations Analysis

FT-NIRS

-60

Department of Agriculture

National Institute of Food and Agriculture

G2F: Maize G X E Project

Goal: To Enhance ability to predict plant performance and a deeper understanding of relevant biology

Apply the maize genome sequence, multi-location phenotypes and environmental data to identify useful genetic diversity

Southeast Regional Aflatoxin Trials (SERAT)

Goal: To determine the multi-environmental adaptation and phenotype of breeding material for aflatoxin resistance, with high yield and associated agronomic traits.

United StatesNational InstituteDepartment ofof Food andAgricultureAgriculture

* Started in 2003

Set of ~32 hybrids, 3 reps per loc.

- Investigators enter ~ 7 hybrids
- ~4 checks
- * Inoculated for *Aspergillus flavus* (various methods)
- *Measure yield, aflatoxin and other traits

Current project expansion (USDA and AMCOE) *Inbred screening

*Interaction of resistance genetics and atoxigenics

*Meta-analysis of historical data

NC – Dr. Krakowsky

- GA Drs. Ni, Guo,Scully
- MS Drs. Williams, Windham, Warburton
- Tx1 Drs. Xu, Odvody
- Tx2 Drs. Isakeit and Murray

Companies:

BH Genetics – Dr. Raab and Arnold, Pioneer,

Monsanto – Dr. Gorman

Aflatoxin contamination

- Produced by fungus Aspergillus flavus L.
- US federally regulated at 20ppb
 - Above 500ppb corn must be destroyed!
- Can lead to acute death
 - Kenya 2004: 125 people died, 192 poisoned (levels to 2,000ppb)
 - US 1998: 25 dogs died eating levels of 100-200ppb for 3 months
- Potent chronic carcinogen, leads to stunting, and other health problems in humans and animals
 - 1.7cm decrease in height for highly exposed children in Benin
 - Higher rates of liver cancer in China
 - Varying sensitivities among species
- \$14 \$250 million loss from mycotoxins in 2008

Courtesy of Velazquez, Bailey, Deng, and Dixon; Texas AgriLife (2010 - unpublished data)

Challenges in developing lines with good aflatoxin resistance and yield under stress

How do we separate these various correlated traits ?

- Husk Coverage
 - Long, cover tips
 - Tight and thick
- Maturity
 - Flowering time
 - Days to maturity
 - Kernel hardness
 - Ear nod (ear droop)
 - Earworm resistance
 - Drought tolerance

How do we make gains from selection on this many traits ?

Inoculating yield trials with colonized kernels

Harvesting yield trials

Fourier Transformed Near Infrared Reflectance Spectroscopy FT-NIRS (Thermo Antaris II) Vicam AflaTest immunoaffinity columns

AflaTest Affinity Column

Multi-parent populations to pyramid aflatoxin resistance sources and yield

• Develop 4-way and 8-way cross populations from known sources of resistance (Warburton et al.)

- Select inbred lines from these populations across different environments and investigators
 - Phenotypic for yield
 - Using markers for aflatoxin (Warburton)

← 4-Way Cross Populations; Ne=200+

a (Tx740/Mp313E)//(Tx772/Mp715) fourway 3 sib mated b.(Tx772/Mp313E)//(Tx740/Mp715) fourway 3 sib mated

8-Way Cross Populations (3); Ne=100+→

c ((CML 108/Mp715))//(A6 /Tzi 8)///((Tzi 18/Ki3)//(NC334/Hi27)) d. ((CML 108/NC334)//(Tx740/CML 348))///((Tzi 18/Mp313E)//(CML 311/Mp715)) e. ((Tzi 18/CML 69)//(Tzi 8/Mp313E))///((CML 108/A6)//(CML 311/Mp715))

Pleiotropic effects of loci – agronomics and yield

QTL variant	Bin	Chr.	B73	Mo17	Effect	Description			
Grain yield									
1	7.04	7	С	Ν	5-7 bu/ac	Leucine rich repeat			
2	2.03	2	Ν	Α	3 to 8 bu/ac	PUT-2-171a-Zea_mays-13770			
3	9.06	9	Ν	Α	3-5 bu/ac	ATP-dependent CLP protease			
Plant height									
1	7.04	7	С	Ν	2 inches	Leucine rich repeat			
4	3.05	3	Α	С	1 to 3 inches	Chromatin assembly factor I			
3	9.06	9	Ν	Α	~1.5 inches	ATP-dependent CLP protease			
				C	Days to silk				
1	7.04	7	С	Ν	1.8 days	Leucine rich repeat			
5	8.05	8	С	Ν	1 day	Protein tyrosine kinase motif			

CHR	MAF	FDR_adj_P	Log10	Effect	R2 (%)
		CS11-WW ^a (log10) [aflatoxin + 10])	
<mark>4</mark>	0.32	0.2	5.48	-0.03	5.27
		CS12-WW ^a (log10) [aflatoxin + 10]])	
<mark>4</mark>	0.32	0.23	5.43	-0.07	5.69

Barerro et al. 2015 PLoS ONE

Great....more significant QTV SNPs.... But how do you validate and use them?

- Confirm with other studies
- Develop iso-lines?
 - Labor/ time,
 - Genetic background / context dependent,
 - Relevance?
- Develop a bi-parental population relevant for other reasons?
 - Which parents to cross?
- Screen germplasm collections for individuals with the SNPs of interest (Romay et al. 2013)
 - >4000 lines!
 - ~700,000SNPs!

Romay et al. Genome Biology 2013, 14:R55 http://genomebiology.com/2013/14/6/R55

RESEARCH

Open Access

Comprehensive genotyping of the USA national maize inbred seed bank

Maria C Romay¹, Mark J Millard²³, Jeffrey C Glaub<mark>i</mark>tz¹, Jason A Peiffer⁴, Kelly L Swarts⁵, Terry M Casstevens¹, Robert J Elshire¹, Charlotte B Acharya¹, Sharon E Mitchell¹, Sherry A Flint-Garcia^{2,6}, Michael D McMullen^{2,6}, James B Holland^{2,7}, Edward S Buckler^{1,2,5*} and Candice A Gardner^{2,3*}

Validating these SNPs in three bi-parental linkage populations

Population	F _{2:4} N=	SNP1	SNP2	SNP3
LH82 X (LAMA2002-12-1-B-B-B-B/LAMA2002-1- 5-B-B-B)-3-2-B-1-B3-B)	178	X	X	
Tx740 x NC356	110 (55)	X	X	
Ki3 x NC356	239 (72)	X	X	X

	Ear		Ρο	o. 3	Plant		Pop. 3	3 Plant	
SNP2	height	P < 0.03	SN	P1	height	P < 0.01	SNP	height	P < 0.003
	LS				LS			LS	
Level	Means	N =	Le	vel	Means	N =	Leve	Means	N =
X:X	22.5	156	X	X	62.5	56	X:X	59.0	70
X:Y	21.5	144	X	Y	61.2	64	X:Y	63.2	60
Y:Y	21.2	182	Y	Y	59.2	86	Y:Y	61.4	87
Pop	P <	482 (45	Po	o. 3		206 (33	Pop3		217 (22
effect	0.0001	missing)	or	nly		missing)	only		missing)

Good results considering

- Off season nursery
- Lines per se and not hybrids
- Not yield

Ms. Yuanyuan Chen PhD student

Genotyped with KASPAR assay's

In **Plant Breeding** and **Genetic Linkage Mapping** <u>effective</u> <u>recombination</u> is more often becoming the limiting factor

107,308 total markers

<u>B73 x Tx903</u> 44,581 markers

<u>Tx772 x Tx906</u> 73,717 markers

Polymorphic in both 11,149 markers

107,308 markers *1207 lines = 129,000,000 marker data points @ \$0.0004 per data point

	Ref.	B730lc1	Tx903	Tx772	Tx906
Reference	100%	98.5 %	64.7 %	40%	44.9%
B73olc		100%	64.7 %	40.1%	44.9%
Tx903			100%	40.9%	42.9%
Tx772				100%	40.7%
Tx906					100%

Huge power to detect QTLs with high resolution

Manhattan plot of all 4-parent individuals (899 observations); ~130,000 SNPs

- Gene region of 3,731 bp: 82,017,148 82,020,879
- Yellow endosperm detection was very strong, and in correct place.
- Peak logarithm of odds (LOD) value of 87.20.

Kernel color distribution

% blue	% white	% yellow	% seg.	
23.1	31.3	33.0	12.6	

Blue kernels were dissected to determine endosperm color

yellow endosperm1 (y1) on Chromosome 6

Group	n	Chr.	Peak position (bp)	LOD	Confidence interval distance (bp)
all subpops	1141	6	82,017,348	107.08	54
all4ways	899	6	82,017,348	87.2	54
4way3sib	488	6	82,017,402	48.95	54
4way2sib	89	6	83,621,389	11.89	2,712,138
4way1sib	203	6	82,017,348	26.85	7,303,989
4way0sib	109	6	83,621,056	14.74	757,405
B73xTx903	121	6	78,735,091	16.90	3,618,539
Tx772xTx906	121	6	82,764,656	14.81	747,254
all2ways	242	6	82,017,348	29.41	845,669

Z. mays Commercial Hybrid

shattering

Z. Mays X Z. Diploperennis F1

Lines derived from Z. mays X Z. diploperennis X Shavers populations ~F4

Weslaco, December 2013 Note differences in roots

'Perennial' crosses

Z. mays

Cycling of gamete in vitro (COGIV)

Murray et al. 2013, Nature Biotechnology De La Fuente, Frei & Lübberstedt 2013, Trends in Plant Science Undergraduates & high school students

Graduate students, technical support, and visiting professors

Acknowledgments - Funding

These projects were supported by the Agriculture and Food Research Initiative Grant no. #2010-85117-20539 USDA-NIFA Plant Breeding and Education Program Grant no. #2011-67003-30342 USDA-NIFA Climate Change Mitigation and Adaptation in Agriculture Program Grant no. #2014-68004-21836 USDA-NIFA Food Security **Eugene Butler Endowed Chair in Agricultural Biotechnology Texas A&M Agrilife Research Texas Corn Producers Board USDA-Hatch USDA-SCA Texas AgriLife Research** TEXAS A&M **Monsanto Fellowship Pioneer Hybrid Fellowship** RESEARCH **USDA-APHIS** National Institute **United States**

Department of

Agriculture

of Food and

Agriculture

MONSANTO

Predecessors Dr. Kerry Mayfield Dr. Javier Betran Dr. Tony Bockholt Frank Foight

Critical assistance

Acknowledgments Visiting Scientists Amin Alhakimi Qingcheng Meng Dongyan Zhang **Gustavo Hugo**

Graduate Students (con't) Steven Anderson Yuanyuan Chen Zoran Ilievski Nancy Wahl

Texas A&M Weslaco Center staff

Beto Garza and the Weslaco Special Projects unit crew Al Nelson and the Brazos Bottom Farm crew David Baltensperger and the Department of Soil and Crop Sciences

Collaborators and Contributions

Dr. William Rooney (TAMU) and the Sorghum Project Mr. Dennis Pietsch and the Crop testing program **Dr. Tom Isakeit (TAMU) and laboratory** Dr. Wenwei Xu (USDA) **Dr. Mike Kolomiets (TAMU)** Dr. Gary Odvody (TAMU) **Dr. Marilyn Warburton (USDA) BH** Genetics **Dr. Paul Williams (USDA) Dr. Gary Windham (USDA)** Dr. Randall Wisser (UD) Dr. Patricia Klein (TAMU) Dr. Matt Krakowsky (USDA) **Dr. Lloyd Rooney (TAMU)** Dr. Joseph Awika (TAMU) **Dr. Hongbin Zhang (TAMU)**

Collaborators and Contributions Dr. Russ Jessup (TAMU) Dr. Jim Holland (USDA) Golden Acres Genetics SERAT group

> Maria Ypinia (Intern) Nicholas Ace Pugh **Michael Spiegelhauer Olivia De Hoyos** Many more

Graduate Students Dr. Kerry Mayfield Meghyn Meeks Gerald De La Fuente Adam Mahan Jim Wilborn **Ivan Barrero Rupa Kanchi** Jeff Savage **Schuyler Smith Jacob Pekar Justine Christman Kolomiets** lab

Undergraduates Amee R. Bumguardner **Travis Rooney David Rooney Anthony Grassia Daniel Hillin** John Price **Ryan McHugh Undergraduates (cont't)** Dale Herrington Joeseph Beard (Intern) **Andrew Beamsley (Intern) Alexandre Galea (Intern) Keith Sage Kimberley Wightman (Intern)**