Mitch McGrath
Sugar Beet Research Geneticist with USDA-ARS since 1996
& Adjunct Professor, Plant, Soil, and Microbial Sciences
Michigan State University
East Lansing, Michigan, USA

“Sugarbeet Genetics, Genomics, and Germplasm Enhancement”
NAPB Webinar Series 2015
April 22, 2015

Mitch.McGrath@ars.usda.gov

Disclaimers: “Mention of trade names or commercial products in this presentation is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.”
Introduction to the crop

an industrial crop...

World growing regions

Average regional sugar beet output (kg/ha)
Sucrose ~ 8 million tons
55% beet (green), 45% cane (red)
HFCS (yellow) ~ 9 million tons

Sugarbeets for Sugar, Harvested Acres: 2007
1.25 million acres (0.5 million hectares)
$1.34 billion to growers
Sugar Beet Field Operations
65+ year history at MSU
Saginaw Bean & Beet Farm

Sugar Beet Root

<table>
<thead>
<tr>
<th>Water</th>
<th>Dry Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>75%</td>
<td>25%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sucrose</th>
<th>Non-Sucrose</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.5%</td>
<td>7.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insoluble</th>
<th>Soluble</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nitrogenous Organic</th>
<th>N-Free Organic</th>
<th>Mineral Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1%</td>
<td>0.9%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Non-Sucrose DM
SucDM
Water
Sucrose yield = root yield \times sucrose percent – loss to molasses

Sucrose accumulation over time

Yield accumulation over time

Water content has huge influence on sugar content & yield

\text{Yield water} \times \text{yield sucrose (FW)}

\text{Percent water} \times \text{percent sucrose (FW)}

- no correlation between yield and percent ($R^2 = 0.09$)
The crop

\[\text{Beta vulgaris L. spp. vulgaris} \]
\[2n = 2x = 18 \]

Leaf beet / chard

Red / Table / Garden / Beetroot

Sugar / Energy

Fodder / Mangel

Pigments are betalains (\(R \) & \(Y \))
not anthocyanins

Germplasm enhancement: 2008 data

<table>
<thead>
<tr>
<th>Accession</th>
<th>Lineage & Description</th>
<th>T/A %</th>
<th>%SucFW</th>
<th>SucA %</th>
<th>%DM %</th>
<th>%water %</th>
<th>%sucDM %</th>
<th>APH Rhizoctonia Fusarium RZM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL-A021744</td>
<td>Low water elites</td>
<td>67.3</td>
<td>20.2</td>
<td>18.4</td>
<td>7467.2</td>
<td>23.2</td>
<td>76.8</td>
<td>79.5 1.7 3.4 2.0 2.5</td>
</tr>
<tr>
<td>EL-A022463</td>
<td>FS SR Comp x OTRangeA</td>
<td>32.0</td>
<td>22.1</td>
<td>18.4</td>
<td>8132.3</td>
<td>22.8</td>
<td>77.2</td>
<td>80.6 1.9</td>
</tr>
<tr>
<td>EL-A022471</td>
<td>low water IC-1-A</td>
<td>61.8</td>
<td>22.1</td>
<td>18.5</td>
<td>8154.1</td>
<td>22.6</td>
<td>77.4</td>
<td>82.0 1.5</td>
</tr>
<tr>
<td>EL-A022459</td>
<td>SR Suc RZM IC2</td>
<td>71.3</td>
<td>21.5</td>
<td>18.6</td>
<td>7985.1</td>
<td>22.5</td>
<td>77.5</td>
<td>82.8 1.4 3.2 2.0</td>
</tr>
<tr>
<td>EL-A022465</td>
<td>low water IC1 - EL</td>
<td>64.0</td>
<td>20.5</td>
<td>18.4</td>
<td>7485.6</td>
<td>22.5</td>
<td>77.5</td>
<td>81.8 2.3 1.8</td>
</tr>
<tr>
<td>EL-A021733</td>
<td>Rhizoc elites</td>
<td>81.8</td>
<td>18.2</td>
<td>17.6</td>
<td>6382.3</td>
<td>22.4</td>
<td>77.6</td>
<td>78.8 1.4 3.5 2.1 4.2</td>
</tr>
<tr>
<td>EL-A021725</td>
<td>(95HS2/sal) x 07-5E</td>
<td>41.3</td>
<td>18.6</td>
<td>17.8</td>
<td>6670.6</td>
<td>22.4</td>
<td>77.6</td>
<td>79.4 3.1 3.5 1.7</td>
</tr>
<tr>
<td>EL-A016102</td>
<td>95HS2/salusal</td>
<td>74.3</td>
<td>23.1</td>
<td>18.1</td>
<td>8413.8</td>
<td>22.3</td>
<td>77.7</td>
<td>81.1 2.3 2.7 1.6 3.3</td>
</tr>
<tr>
<td>EL-A022446</td>
<td>low water IC1 - D</td>
<td>67.5</td>
<td>21.4</td>
<td>17.9</td>
<td>7652.6</td>
<td>22.3</td>
<td>77.7</td>
<td>80.3 2.1 1.9 3.1</td>
</tr>
<tr>
<td>EL-A021842</td>
<td>SR66 sal</td>
<td>79.5</td>
<td>25.3</td>
<td>17.7</td>
<td>9000.9</td>
<td>22.2</td>
<td>77.8</td>
<td>79.9 1.7 3.9 1.7 3.4</td>
</tr>
<tr>
<td>EL-A022462</td>
<td>low water IC1 - B</td>
<td>83.0</td>
<td>23.5</td>
<td>18.3</td>
<td>8567.5</td>
<td>22.1</td>
<td>77.9</td>
<td>82.6 1.5 1.8</td>
</tr>
<tr>
<td>EL-A015019</td>
<td>SR Comp F4 (unselected)</td>
<td>78.8</td>
<td>22.6</td>
<td>17.9</td>
<td>8099.8</td>
<td>22.1</td>
<td>77.9</td>
<td>81.2</td>
</tr>
<tr>
<td>EL-A021841</td>
<td>HS elites</td>
<td>93.8</td>
<td>24.9</td>
<td>17.9</td>
<td>8866.8</td>
<td>22.1</td>
<td>77.9</td>
<td>81.0 2.6 4.3 2.1 3.0</td>
</tr>
<tr>
<td>EL-A015020</td>
<td>SR Comp F4 (14%)</td>
<td>83.3</td>
<td>26.4</td>
<td>17.2</td>
<td>9086.5</td>
<td>22.1</td>
<td>77.9</td>
<td>77.9</td>
</tr>
<tr>
<td>EL-A015022</td>
<td>SR Comp F4 (16-17%)</td>
<td>76.5</td>
<td>19.0</td>
<td>17.5</td>
<td>6702.0</td>
<td>22.0</td>
<td>78.0</td>
<td>79.7</td>
</tr>
<tr>
<td>EL-A022447</td>
<td>low water IC1 - card</td>
<td>81.0</td>
<td>24.1</td>
<td>18.0</td>
<td>8735.6</td>
<td>22.0</td>
<td>78.0</td>
<td>81.8 2.2 4.1 1.5</td>
</tr>
<tr>
<td>EL-A022426</td>
<td>C40 high sucrose x SR</td>
<td>74.8</td>
<td>21.9</td>
<td>17.5</td>
<td>7704.9</td>
<td>21.9</td>
<td>78.1</td>
<td>79.9 1.5 2.6</td>
</tr>
<tr>
<td>EL-A019277</td>
<td>Joe’s mix of 04 roots</td>
<td>61.8</td>
<td>21.6</td>
<td>18.1</td>
<td>7779.9</td>
<td>21.9</td>
<td>78.1</td>
<td>82.2 1.8 2.1 1.5</td>
</tr>
<tr>
<td>EL-A022469</td>
<td>SR RZM Rhizob B IC</td>
<td>68.8</td>
<td>23.1</td>
<td>17.7</td>
<td>8175.1</td>
<td>21.8</td>
<td>78.2</td>
<td>81.1 1.8 3.0 1.7</td>
</tr>
<tr>
<td>EL-A022452</td>
<td>low water IC - C</td>
<td>60.0</td>
<td>22.4</td>
<td>18.0</td>
<td>8051.0</td>
<td>21.8</td>
<td>78.2</td>
<td>82.7 2.5 2.2</td>
</tr>
<tr>
<td>EL-A021734</td>
<td>SR96/sal</td>
<td>76.5</td>
<td>24.0</td>
<td>17.6</td>
<td>8515.4</td>
<td>21.7</td>
<td>78.3</td>
<td>80.9 2.0 1.7 3.4</td>
</tr>
<tr>
<td>EL-A015021</td>
<td>SR Comp F4 (10-12%)</td>
<td>66.0</td>
<td>25.5</td>
<td>17.0</td>
<td>8718.5</td>
<td>21.5</td>
<td>78.5</td>
<td>79.3</td>
</tr>
<tr>
<td>EL-A021500</td>
<td>Mix EL0224 x SR-Suc-2003</td>
<td>50.3</td>
<td>20.7</td>
<td>17.2</td>
<td>7143.5</td>
<td>21.3</td>
<td>78.7</td>
<td>80.6 1.8 3.6 2.2 2.3</td>
</tr>
<tr>
<td>EL-A022453</td>
<td>RZM RZC Hero IC</td>
<td>57.8</td>
<td>23.6</td>
<td>17.5</td>
<td>8269.5</td>
<td>21.3</td>
<td>78.7</td>
<td>82.2 2.0 2.7 1.3 3.8</td>
</tr>
<tr>
<td>EL-A013703</td>
<td>FC mix</td>
<td>83.5</td>
<td>19.6</td>
<td>16.8</td>
<td>6603.4</td>
<td>21.2</td>
<td>78.8</td>
<td>79.4 3.0 1.6 1.4 6.1</td>
</tr>
<tr>
<td>EL-A015029</td>
<td>EL53 (1)</td>
<td>60.0</td>
<td>21.2</td>
<td>16.0</td>
<td>6804.3</td>
<td>21.0</td>
<td>79.0</td>
<td>76.3 2.2</td>
</tr>
<tr>
<td>EL-A012858</td>
<td>EL2024</td>
<td>59.8</td>
<td>23.7</td>
<td>16.3</td>
<td>7693.9</td>
<td>20.7</td>
<td>79.3</td>
<td>78.9</td>
</tr>
<tr>
<td>HM1727Rz</td>
<td>commercial</td>
<td>83.5</td>
<td>20.5</td>
<td>18.7</td>
<td>7746.0</td>
<td>25.1</td>
<td>74.9</td>
<td>75.0</td>
</tr>
<tr>
<td>Crystal 827Rr</td>
<td>commercial</td>
<td>64.5</td>
<td>24.1</td>
<td>19.2</td>
<td>9237.5</td>
<td>24.6</td>
<td>75.4</td>
<td>78.3</td>
</tr>
<tr>
<td>HM2719Rz</td>
<td>commercial</td>
<td>68.8</td>
<td>22.2</td>
<td>19.6</td>
<td>8742.3</td>
<td>24.4</td>
<td>75.6</td>
<td>80.3</td>
</tr>
<tr>
<td>Beta 5930R</td>
<td>commercial</td>
<td>67.5</td>
<td>22.6</td>
<td>18.6</td>
<td>8460.0</td>
<td>23.8</td>
<td>76.2</td>
<td>78.5</td>
</tr>
<tr>
<td>Beta 5833R</td>
<td>commercial</td>
<td>45.5</td>
<td>25.9</td>
<td>17.9</td>
<td>5066.2</td>
<td>23.4</td>
<td>76.6</td>
<td>76.7</td>
</tr>
<tr>
<td>HM276Rr</td>
<td>commercial</td>
<td>59.5</td>
<td>19.1</td>
<td>18.6</td>
<td>7131.8</td>
<td>23.4</td>
<td>76.6</td>
<td>79.5</td>
</tr>
<tr>
<td>E17</td>
<td>commercial</td>
<td>69.8</td>
<td>27.9</td>
<td>17.8</td>
<td>9861.7</td>
<td>23.1</td>
<td>76.9</td>
<td>77.0</td>
</tr>
<tr>
<td>Beta 5451</td>
<td>commercial</td>
<td>50.8</td>
<td>22.0</td>
<td>17.9</td>
<td>7879.4</td>
<td>23.0</td>
<td>77.0</td>
<td>77.9</td>
</tr>
</tbody>
</table>

resistant check
susceptible check
A view to the evolution of sugar beets

Beta vulgaris ssp. maritima

$2n = 2x = 18$
Historically important US public sugar beet germplasm releases (~1940-2000)

12 plants per accession
69 RAPD alleles scored

Within population heterozygosity has decreased with local breeding over time
Sugar beet (from the Atlas des Plantes de France, 1891)

1747 – Marggraf
Beet crystals = cane crystals

1784 – Achard
Selected first sugar beet

1830’s – Vilmorin
Selected high sugar mother roots & tested progeny

for flowering:
(greenhouse protocol)

Req’s vernalization:
(5° C, Oct 1 – Dec 30°)

Bolting
B- annual, bb biennial
(Jan – Feb)

Flowering
(March-April)

Seed harvest & processing
(June-July)

Mulitgerm

MM or Mm

Monogerm

mm

Kern: Am.Crystal Sugar Co.
Pollen control is key to beet breeding

Fertile anther
- normal cytoplasm

Cytoplasmic MS anther
- sterile cytoplasm

Expression of O-type CMS requires 3 recessive genes: xx, (yy), zz (2 are linked)

Commercial hybrid seed production

2-row pollinator
6-row CMS
Experimental hybrid seed production

Numerous CMS Seed Parents (monogerm)

Single Pollen Parent (multigerm)

Experimental seed production -> complex self-incompatibility system

OP seed production

Self Fertile: greenhouse (RILs)

Sib & Pair Cross

SF : field
Breeding in open pollinated crops:
Manipulating gene frequency where gene function(s) unknown

Mother root selection (mass selection with or without progeny testing)
Sib-mating (Pair crosses)
Inbreeding via dominant self-fertility allele (S^f; suppressor of self-incompatibility?)
Hybrids enforced with nuclear or cytoplasmic male sterility

Predominant diseases of U.S. growing regions and USDA-ARS breeding station disease responsibilities

- Viruses
 - Curly Top
 - Yellows Complex
 - Rhizomania
- Cyst nematode
- Rhizoctonia
- Cercospora
- Aphanomyces
- Curly Top
- Rhizomania
- Cyst nematode
- Aphanomyces
- Cercospora
- Rhizoctonia
- Cyst nematode
Cercospora leaf spot resistance (mass selection)

Cercospora tolerance variety trial
Saginaw, MI (2005)

July 27

August 15

Mother root selection for Rhizoctonia Crown & Root Rot and damping-off resistance

July 7, 2008

August 21, 2008

East Lansing, MI
Using self-fertility (S') to examine segregation
- dominant suppressor of self-incompatibility

Sucrose content in MSR F_2 sugar x red population
(greenhouse grown plants)

Sucrose concentration (mg/g DW)

F1

Sugar beet parent

Red beet parent

Individual roots

Sugar x Red = MSR RIL population

Within MSR F_3 family variation
Sugar x Red beet (MSR) F₅ inbred population (showing just green segregants)

- Low within family variation
- High between family

Root Weight
0.3 - 2.5 Kg

Sucrose content
11.5 - 23.3%

Water content
71.4 - 81.1%

Dry Matter = biomass
18.9 - 28.6%

154 Sugar x Red MSR F5 RIls
(average of 5 roots)
Partitioning phenotypic variability across the chromosomal landscape

Yield Traits

Physiological Traits

Water (1 – biomass)

Elements of Modern Plant Improvement

Populations

‘real’ breeding

“Markers”

Phenotypes
The phenotype: seed with 95% germination consistently average 60 established beets

Germination in solution
Constitutive gene expression (95%)

Induced gene expression (5%)

Induced:
- Filter Paper (0.9%)
- NaCl (0.4%)
- Mannitol (0.25%)
- H₂O₂ (0.6%)
- NaCl + H₂O₂ (0.4%)
- Water+ (2.45%)

Phenotypic markers & gene discovery

Differential gene expression between low- and high-vigor germinating sugar beet seedlings (96 hr germination)

BC4

807 cDNA/bands surveyed
50 primer dd-PCR combinations
40 cDNA fragments cloned & sequenced

PCR confirmation

Germin-like Protein -> putative oxalate oxidase
oxalalic acid -> CO₂ + H₂O₂

Model for initiation of seedling vigor via hydrogen peroxide

beet seed & favorable germination conditions

stressed-induced Germin-like Protein expression
or, exogenous hydrogen peroxide

H₂O₂ acts as inter-cellular ‘vigor signal’

Stress-responsive (e.g. ‘vigor’) gene expression (induction of glyoxylate cycle for lipid catabolism)

intra-cellular ‘vigor signal’ is recognized and transduced (via a MAP Kinase cascade?)

activation of gene expression via specific Transcription Factors (currently unknown)

growth under a wider range of favorable conditions
‘transcriptomes for traits?’
-> gene / process / marker discovery

Germinating seedlings

<table>
<thead>
<tr>
<th>Process</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycolysis</td>
<td>11%</td>
</tr>
<tr>
<td>Redox</td>
<td>5%</td>
</tr>
<tr>
<td>Secondary</td>
<td>7%</td>
</tr>
<tr>
<td>Hormone Metal</td>
<td>7%</td>
</tr>
<tr>
<td>Phosphorus Biochemistry</td>
<td>5%</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>7%</td>
</tr>
<tr>
<td>Nucleic acids</td>
<td>7%</td>
</tr>
<tr>
<td>Lipid</td>
<td>7%</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>16%</td>
</tr>
<tr>
<td>Amino Acid</td>
<td>10%</td>
</tr>
<tr>
<td>Oxidative Phosphorylation</td>
<td>4%</td>
</tr>
<tr>
<td>TCA cycle</td>
<td>1%</td>
</tr>
<tr>
<td>Energy</td>
<td>1%</td>
</tr>
<tr>
<td>ATP Synthase</td>
<td>1%</td>
</tr>
<tr>
<td>Light harvesting</td>
<td>1%</td>
</tr>
</tbody>
</table>

Count transcripts devoted to catabolic functions:
Germinating seedlings -> ~ 26%
Developing seedlings -> ~ 15%

GO - Biological Process
- cellular metabolic process
- organic substance metabolic process
- primary metabolic process
- single-organism metabolic process
- nitrogen compound metabolic process
- single-organism cellular process
- biosynthetic process
- establishment of localization
- cellular response to stimulus
- response to chemical stimulus
- single-multicellular organism process
- anatomical structure development
- single organism signaling
- multicellular organismal development
- cellular process
- single-organism developmental process

Need a genome sequence to better inter-relate genes and phenotypes

2n = 2x = 18
750 Mb

100x T. Schmidt

3-10 week developing roots
Current status of beet genome sequence(s)

Good gene-space coverage

Too many contigs!

<table>
<thead>
<tr>
<th>Genome</th>
<th>Version</th>
<th>Derivation</th>
<th>Coverage</th>
<th>Contigs > 1kb</th>
<th>Total Length (Mb)</th>
<th>% of genome</th>
<th># predicted genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RefBeet *</td>
<td>1.1</td>
<td>doubled haploid</td>
<td>387 x</td>
<td>43,721</td>
<td>569.0</td>
<td>75.9</td>
<td>27,421</td>
</tr>
<tr>
<td>C869</td>
<td>0.4</td>
<td>inbred</td>
<td>185 x</td>
<td>54,793</td>
<td>535.3</td>
<td>71.4</td>
<td>30,671</td>
</tr>
<tr>
<td>MSR-F7 (pool)</td>
<td>0.1</td>
<td>bi-allelic</td>
<td>114 x</td>
<td>104,202</td>
<td>251.5</td>
<td>33.5</td>
<td>nd</td>
</tr>
</tbody>
</table>

* Dohm et al. (2014) Nature 505:546–549

Currently pursuing reference genome quality genome sequence:

- Next-next-generation sequencing
- Hi-C scaffolding libraries
- Optical mapping
- Hybrid next-gen sequencing & BAC library integration
- Genetic map integration

Background slide: Network of beet root development genes

Thanks to many current and former members of the Sugarbeet Research Program, USDA-ARS, East Lansing, Michigan

Thanks to many, many colleagues around the world

Funding provided by USDA-ARS base funds with direct and in-kind assistance from the member companies of the Beet Sugar Development Foundation, Michigan Sugar Company, & Michigan State University

Thanks to the organizers (and presenters) of these NAPB plant breeding webinars

And, especially, thanks to you, for your time, interest, and attention!