Welcome to the How to Use Doubled-Haploids to Improve Winter Wheat Webinar

Today's Presenters: Drs. Bill Berzonsky & Melanie Caffe-Treml Presentation www.extension.org/pages/60429 Brought to you by: Plant Breeding and Genomics www.eXtension.org/plant_breeding_genomics

Host: Heather Merk Sign up for PBG News: http://pbgworks.org

Please fill out the survey evaluation: (You will be contacted via email)

Watch past webinars! Look for more webinars in winter 2012!

www.extension.org/pages/ 60426

How to Use Doubled-Haploids to Improve Winter Wheat

William Berzonsky & Melanie Caffe-Treml

Berzonsky – Strategy in applying DHs to wheat breeding

Caffe-TremI – Details of the DH technique

What are Doubled-Haploids (DHs)? Plants rapidly moved to a homozygous (2n stage) <u>without</u> "traditional" self-pollination

"Traditional" vs. DH Method

Self-Pollination Over Generations

DH Method

"Traditional" Pure-line Breeding Scheme

Year	Procedure	<u>Generation</u> (Homozygosity)
1	Cross between parents	F ₁ (0%)
2	Selection between plants	F ₂ (50%)
3	Selection between families	F ₃ (75%)
4	Selection between families	F ₄ (87.5%)
5	Selection between families	F ₅ (93.7%)
6	Selection between pure lines	F ₆ (96.8%)
7	Yield evaluations of lines	F ₇ (98.4%)
+ Ar	other 2 years of yield evaluation	s/seed increases
Fotal y	vears = 9	

"Double Haploid" Breeding Scheme

Year	Procedure	<u>Generation</u> (Homozygosity)	
1	Cross between parents	F ₁ (0%)	
2	Cross F1 plants with maize*	(100%)	
3	Seed multiplication	(100%)	
4	Selection between pure lines	(100%)	
5	Yield evaluation of lines	(100%)	

+Another 1 or 2 years of yield evaluations/seed increases

Total years: 7

*Added benefit of having homozygous lines for identifying molecular markers

DHs represent an <u>alternative</u> to self-pollination and inbreeding for many generations

Overall Purpose of DH Production is to Sample Adequate Genetic Variation from the Initial F₁ Cross

(Initial F₁ Cross)

- Lines)

<u>Must not have</u> significant loss of variation during development of DHs

To realize advantages of DHs in breeding – "Visualize" the breeding process as a factory

Release Variety ~ 10 to 12 Years

Advantages to Using DHs

Homozygosity is achieved very rapidly essentially one step

- Safe selection can be practiced on resulting homozygous, true-breeding plants
- Selection is on the basis of additive gene action
- A homozygous source of seed is available for pureline variety release
- A rapid way to produce inbred lines for more efficient testing of combining ability for hybrids

Improves "Factory"

- Quality control and efficiency of factory
- <u>*Time*</u> to product output
- <u>Sustainability</u> of factory production

Improving "Parent Building" – Probably Most Valuable Long-term advantage of DH Technique

From: Barkley, A. and F.G. Chumley. A doubled haploid laboratory for Kansas wheat breeding: An economic analysis of biotechnology option, March 15, 2011.

Disadvantages of Using DHs

- Rapid homozygosity achieved in a single step is often "offset" by the inability to make selections during the traditional inbreeding process
- Less recombination can occur compared with inbreeding
- Success is sometimes unpredictable and can consume valuable resources

Example of Using DHs in Breeding a Self-Pollinator*

*From: **Fig. 2.** B. Fouroughi Wehr and G. Wenzel. 1990. Recurrent selection alternating with haploid steps — a rapid breeding procedure for combining agronomic traits in inbreeders. Theor. Appl. Gen. 80:564-568.

DH Project at South Dakota State University

- Initiated to address needs of WCSIA – Bayer/DU Program
- Not producing DHs for service or on a commercial basis (recent estimate for commercial production = \$30 per haploid line)
- Focuses on developing winter hardy and disease resistant winter wheat varieties

Implementation of DH Technique to Wheat Variety Development in Canada*

Years	No. of Breeding Institutions ⁺⁺	Varieties Released
1997 to 2009	4	10
2001 to 2002	1	2
2000 to 2006	1	3
2004 to 2008	1	2
2010	1	1
2010	1	1
2008 to 2010	3	6
	Years 1997 to 2009 2001 to 2002 2000 to 2006 2004 to 2008 2010 2010 2010 2008 to 2010	Years No. of Breeding Institutions** 1997 to 2009 4 2001 to 2002 1 2000 to 2006 1 2004 to 2008 1 2010 1 2010 1 2010 1 2010 3

+ CWRS = Canadian Western Red Spring, CWSWS = Canadian Western Soft White Spring, CWHWS = Canadian Western Hard White Spring, CWES = Canadian Western Extra Strong, CWAD = Canadian Western Amber Durum, CWRW = Canadian Western Red Winter, Canadian Western General Purpose

++ AAFC Lethbridge, U. of Manitoba, AAFC U. of Saskatchewan, AAFC Swift Current, Viterra, AAFC Winnipeg

* Derived from: Table 2. in DePauw, R.M. et al. 2011. New breeding tools impact Canadian commercial farmer fields. Czech. J. Genet. Plant Breed. 47:S28-S34.

Summary Points – Applying DHs to Breeding

- Must be implemented to achieve a single, focused objective
- Key is to get DH production efficiency to a high level to adequately sample initial F₁ genetic variation
- Must have dedicated, full-time personnel and adequate facilities for DH production
- As a breeding "tool", its biggest benefits are longterm, e.g. parent building, improving effectiveness of selection, hastening variety release over years

"Take Home" Message on Strategy of Applying DH Technique

The benefits to applying the technique in wheat are primarily in the short-term improving the power of selection (quality control and efficiency), and in the long-term "building" improved parents (time and sustainability)

Details of the DH Technique

Embryo Rescue ----- Colchicine Tmt.----3

4

Producing DHs - Maize Pollination Technique

Producing DHs - Maize Pollination Technique

Colchicine treat to double the chromosome number of plants

= Doubled-haploids

Step 1: F₁ or F₂ plants to pollinate

- ➢ F1 or F2
- Stagger planting
- Growing environment can impact efficiency

Step 1: Pollen donor plants

Need to synchronize corn pollen production with wheat flowering time. Effect of corn genotype?

Step 1: Emasculation

- Performed on the day before anthesis
- Minimal cutting of the glume

Step 1: Pollination

- Feathery stigma
- Fresh pollen (light yellow)
- Pollen is sprinkled with a brush over the stigma

Step 1: Environmental condition

> Temperature

Campbell et al (1998) evaluated 3 day/night temperature regimen:

- 17/22°C
- 22/17°C ← Highest embryo formation
- 27/22°C

Light intensity

Campbell et al (1998) evaluated 3 light intensity:

- 300µmol m⁻² s⁻¹
- 500µmol m⁻² s⁻¹
- 1000 μ mol m⁻² s⁻¹ \leftarrow Highest embryo formation
- Relative humidity

60-65% (Khan and Ahmad, 2011)

Step 2: Hormone treatments

Hormone treatment required for seed and embryo development.

→ 2,4D

Several methods of applications:

- Spraying
- Dipping of the spike in solution
- Tiller injection
- Detached tillers cultured in a 2,4-D solution

Step 3: Embryo rescue

14 - 15 days after pollination

Step 3: Embryo rescue

Step 3: Embryo rescue

Haploid embryos

Step 3: Haploid plant regeneration

- Commonly used media:
 - Gamborg's B5 medium
 - Murashige and Skoog basal medium

- ➢ Dark/4°C
 - → break dormancy
- Dark/room temperature
 → germination
- ➢ 16L:8D/room temperature
 → plantlet regeneration

Step 3: Haploid plant regeneration

Haploid plantlets

Step 3: Vernalization

In soil

+ No risk of contamination+ Better plant development

In tube

- + Less space required
- Number of tubes

7 to 9 weeks at 4°C

Step 4: Colchicine treatment

- Colchicine is an alkaloid obtained from Colchicum species. It is very toxic and must be handled with care and appropriate protection.
- Colchicine interferes with microtubule organization and inhibits normal chromosome separation during mitosis, resulting in a cell with double the chromosome number.
- Treatment at the 4-5 tillers stage

Step 4: Colchicine treatment

Step 4: Colchicine treatment

Step 4: Doubled-haploid plants

- Only some tillers will be successfully doubled following colchicine treatment.
- Successfully doubled tillers will set a few seeds.

Efficiency of wheat DH production

Nb of haploid plantlets/100 embryos: 50-70

Nb of DH/100 haploid plants: 75-85

Timing of winter wheat DH production

- Vernalization of wheat donor plants 7 to 9 weeks
- Transfer of wheat to greenhouse
- Emasculation
- Pollination
- Hormone treatment
- Embryo rescue
- Embryo germination
- Haploid plantlet regeneration
- Haploid plantlet vernalization
- Colchicine treatment
- DH seed harvest

5 to 6 weeks

+ 1 day

- + 1 day
- + 14 days
- + 14 days
- + 14 days
- 7 to 9 weeks
- + 1 to 2 months
- + 7 to 8 months

Total: 14 to 16 months

Summary – Details of the DH Technique

- Technique with proven potential
- Needs optimization:
 - Efficiency of production
 - Time-saving

 \rightarrow Optimizations have to be done for each program based on resources available.

Presentation Available at:

www.extension.org/pages/60429