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Overview 
(1) Association Analysis 
 Identifying significant marker-trait linkages in 
complex populations 
 
(2) Genomic Selection  
 Predicting breeding value of an individual based 
on kinship and genotype 
 
(3) Preparing Data 
 
(4) Resources 
 
(5) Practical Examples 



At the end of this module you will be able to: 
 
Describe Association Analysis and Genome Wide 
Selection (GWS) 
 
Define and estimate a Breeding Value 
 
Define a multiple trait index 
 
Prepare data for AA and GWS 
 
Know how to access demonstrations and 
practical exercises. 



Definitions 
 
Association Analysis   
 Mapping in unstructured populations 
  
Marker Assisted Selection (MAS)  
 Selection based on Marker-QTL linkage 
  Direct selection 
  Selection for coupling-phase recombination 
  Background genome selection for accelerated BC 
  Selection for multiple QTL, etc… 
  
Genomic Selection (GWS) 
 Selection based on breeding value  
  Random effects models and BLUPs 
  Estimate breeding value for markers and individuals 



Association Analysis  
 
Proposed as a way to overcome limitations of working 
with bi-parental populations for QTL-based discovery 
and subsequent MAS 
 
In complex populations the magnitude of QTL effects 
tend to be small 
 
Relevance of the complex population to applied goals 
remains an issue (e.g. inbred lines vs hybrids) 



Association Analysis 
 
Data 
 
Vector of trait values from phenotypic evaluation of a 
large complex population (best if these are BLUPs) 
  
Matrix of Markers 
 
Matrix of population structure (STRUCTURE or PCA) 
 
Kinship matrix 



 

%macro Mol(mark); 

proc mixed covtest data = three; 

class &mark gen; 

model T1 = Q1 Q2 Q3 &mark / solution; 

random gen / type = lin(1),data=KIN;  

%mend; 

  %Mol(SL144); 

  %Mol(CT10737I); 

  %Mol(CT20244I); 

  %Mol(SL10525); 

  %Mol(SL10526); 

   etc… 

Marker 

Q Matrix (Q-1) from STRUCTURE 

Models can estimate the contribution of STRUCTURE and Kinship to the trait and 
Marker-Trait linkage… 
 
F-test for significance =   N(1 –2r)2g2  
N = population size; r = recombination distance (marker to QTL; g2 = proportion of 
variance explained by QTL 

Trait BLUP 

Association Analysis 

Kinship matrix (diagonal) 
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Within the context of breeding programs, success with association 
analysis and therefore subsequent MAS will depend on: 
 
(1) population structure;  
(2) segregation of the trait within sub-populations;  
(3) allelic diversity for the trait of interest;  
(4) size of the population;  
(5) size of the sub-populations within the larger population;  
(6) the magnitude of the QTL (proportion of variance explained). 
  
Recommendation:  
(1) Skip association mapping in germplasm collections and focus on 
Nested Associated Mapping (NAM) style populations A x B; A x C; A x 
D; individual breeding programs, etc… 
(2) Use large populations 



Selecting based on molecular markers 
 
Marker Assisted Selection - a subset of statistically significant 
marker–trait associations are discovered, validated and used for 
selection 
 Single markers linked to QTL 
 Haplotypes linked to QTL 
 
MAS – based on marker –trait linkage 
 
Genome Wide Selection - prediction of performance without 
evidence of statistically significant association. 
 Single markers 
 Haplotypes 
 
GWS – based on sum of breeding values estimated for all markers 



Genomic selection (GS)  
 
Selection decisions based on genomic breeding values 
estimated as the sum of the effects of markers across the 
genome (Contrast to MAS in which only markers positively 
associated with trait are used). 
 
Breeding values are derived from Best Linear Unbiased 
Predictors (BLUPs) as the sum of BLUPs for all markers. 
 
Can estimate the breeding value of an individual, even 
when there are no observations (e.g. Dairy Sire example). 



Genomic Selection 
 
Breeding Value:  The part of an individual's 
phenotypic value that is due to additive genetic 
effects. The value of an individual as a parent. 
 
Assign a breeding value to each marker, regardless of 
significance… 
 
GEBV =  Xi gi

𝒏
𝒊   Genomic Estimated Breeding Value is 

the sum of all marker effects for an individual 
 
 



Conceptual change:  
 
Think of the value of a line based on its potential 
contribution to the next cycle of breeding vs its 
performance (Breeding vs Seeds/Commercial) 
 
Animal Agriculture:  Dairy farms purchase sperm based 
on its breeding value not performance.  In contrast seed 
is purchased based on performance. 
 
Breeding progress is based on gain under selection.   



Implications 
 
Significance of Marker-Trait (QTL) association (linkage) is 
less important than the estimated breeding value 
 
We need to start thinking about Marker-QTL linkages as 
random  effects 
 effects (markers) > than phenotypic observations 
 effects are estimated as BLUPs 
 
Estimates of breeding value are strengthened by data 
from relatives, therefore pedigrees, kinship matrices, 
etc… improve estimates of breeding values. 



Data: 
 
Vector (or matrix) of trait-value (best if phenotypes are BLUPs) 
Matrix of kinship (pedigree or marker-based) n x n 
Matrix of Markers (n x k) 
 
 
SNP scoring:  
 
#  markers are scored 0 or 1; heterozygotes would be 0.5; could 
also be number of "common" alleles  (0 = homozygous for rare 
allele; 1 = hetero; 2 = homozygous for common allele) 
 
 



Approaches: 
 
Step-wise regression    
𝜸 =  𝜷o + 𝛽1 𝑿1+∈; 𝜸 =  𝜷o + 𝛽2 𝑿2+∈; etc… 
 
Multiple linear regression  
𝜸 =  𝜷o + 𝛽1 𝑿1 + 𝛽2 𝑿2 + 𝛽3𝑿3 . . . ∈ 
 
Multiple linear regression  with correction/penalty 
 
Ridge Regression 
LASSO 
Bayesian (various e.g. Bayesian-LASSO, etc…) 



Comparing Stepwise with Multiple Regression 
(statistically naïve thought experiment) 

fit1 = lmer(BL_L~(1|M1)) Phenotype  Marker 
ranef(fit1) 
. 
. 
. 
fit5 = lmer(BL_L~(1|M5)) 
ranef(fit5) 
 
 
fitML = lmer(BL_L~(1|M1)+(1|M2)+(1|M3)+(1|M4)+(1|M5)) 
ranef(fitML) 



Table Comparing Stepwise with Multiple Regression 
(statistically naïve thought experiment) 

Step-Wise         

  M1 M2 M3 M4 M5 

0 0.2003 0 0 0 0.9449 

1 -0.2003 0 0 0 -0.9449 

Multiple-Regression       

0 0.1866 0.0001 0.0524 0 0.919 

1 -0.1866 -0.0001 -0.0524 0 -0.919 



 
 

Correction (regularization) involves introducing a penalty 
that places bounds on the regression 

 
Marker homogeneous or marker-specific corrections 
 
Ridge Regression (Tikhonov regularization) adds a 
constant λ to the diagonal of the matrix of coefficients 
 makes solution unique 
 shrinks estimates of marker effects toward 0 
  λ  = σ2 ε / σ2 β 

 
Estimating the correction factor requires sampling the 
data. 
 



Marker homogeneous correction 
 
RR-BLUP, Estimates of marker effects are penalized to the 
same extent; may not be appropriate if markers are 
located in regions of the genome that are not associated 
with genetic variance 
 
Marker-specific correction 
 
Least Absolute Value Selection & Shrinkage Operator 
(LASSO-BLUP) 
 
Bayesian Linear Regression 
 
 



Training 
Population 

Phenotype & 
Genotype 

Breeding  
Material 

Genotype 
   Estimate 
Genomic 
Breeding Value 

Selections 

Conceptual Diagram of GWS (adapted from Fig.  1, Heffner, 
Sorrells, and Jannink, 2009.  CROP SCIENCE, VOL. 49) 

Selections Selections 



Genomic selection is based on a prediction of breeding value 
 
Accuracy depends on the size of the training population, number of 
markers, heritability of the trait, and the number of genes 
contributing to the trait 
 
We can control the population size (and composition) 
 
The number of markers is no longer limiting (SolCAP infinium Array, 
Genotyping by Sequencing, etc…) 
 
The process is iterative, with statistical models re-estimated after 
each cycle of phenotypic evaluation 
 
The relative efficiency of GWS will often be lower than direct 
phenotypic selection; value is to select during rapid generation turn 
over such that multiple cycles of selection can occur.  The issue of 
what to select for remains… 

 

 



GEBV =  Xi gi
𝒏
𝒊   is estimated for one trait, but 

how do we combine traits? 

Multi Trait Index (MTI):  Linear combination of observations used to 
compute a criterion for selection 
 
Yield – directly valued 
Color – directly valued in contracts in the midwest 
Soluble Solids (BRIX) – value? 
Disease resistance – value tied to yield loss or insurance 
adjustment? 
 
Selection criteria are combined into a measure of net merit 
weighted based on the relative importance of all traits; 
will differ between breeding programs due to breeding goals and 
market demands. 



Multi Trait Index tomato 

We can measure color as: L, a, b, 
Hue, chroma, G, R, B, luminosity, % 
red tissue, % yellow tissue, etc… 
 
Which measurements should we 
select for? 



PCA and Development of Multi Trait Index 

  Principal Component 1     Principal Component 2     

BC2     BC2S4   TC19F2 BC2   BC2S4   TC19F2 

  Fremont Wooster Fremont Wooster Fremont Fremont Wooster Fremont Wooster Fremont 

%YSD 0.4819 0.4535 0.4463 0.4157 -0.39377 -0.0267 -0.0911 -0.2147 -0.2896 0.301172 

%RED -0.4171 -0.4487 -0.401 -0.4371 0.444605 0.0485 -0.0451 0.1552 0.0994 -0.28885 

L* 0.3731 0.338 0.3658 0.4263 0.110363 0.1677 0.0969 0.2416 0.0798 0.396884 

a* -0.3764 -0.3708 -0.3528 -0.1054 0.506258 0.4461 0.4675 0.4582 0.6575 0.156219 

b* 0.2341 0.2807 0.3517 0.3974 0.190713 0.5801 0.5583 0.4777 0.3682 0.588045 

Hue 0.5078 0.512 0.4609 0.4471 -0.43707 -0.0179 -0.0161 -0.159 -0.2279 0.347519 

Chroma 0.0178 0.0198 0.2138 0.2923 0.389094 0.658 0.6707 0.6388 0.5293 0.421159 

Proportion 0.5382 0.5283 0.6178 0.6228 0.517 0.3265 0.3138 0.2726 0.313 0.3333 

Cumulative - - - - - 0.8647 0.8422 0.8904 0.9358 0.8503 

For three separate populations, PCA-1  is strongly weighted 
toward color uniformity and color while PCA-2 is weighted 
toward color intensity (Audrey Darrigues) 



Predicted Gen. Value relative to BLUP of Phenotype 
(BLR package) 

http://genomics.cimmyt.org/ 

GEBV =  Xi gi
𝒏
𝒊  

Marker Value 
0  -0.32 
1   1.23 
0   0.40 
1  -0.75  
1   0.86 
Sum   1.42 



Preparing data for GWS 
 
Y - Phenotype of (n) individuals estimated as BLUPs 
 
X – Marker matrix (n x k) with (k) markers scored on 
proportional scale (e.g. copies of common allele) 
 
A – Kinship or pedigree matrix (n x n) 
 
 



Y - phenotypic 
values  



Processing 
Variety Name 
SCT_No. 

Marker 

Delete rows with 
redundant or 
unnecessary information 

X – Marker Data 



Missing Data 
 
Eliminate markers with >20% missing data 
Impute alleles for markers with missing data using data for 
flanking markers (organize the markers by physical or genetic 
map) 
 
Tools 
PLINK 
http://pngu.mgh.harvard.edu/~purcell/plink/pimputation.shtml 
MATCH  
http://www.sph.umich.edu/csg/abecasis/MACH/tour/imputation.html 

IMPUTEv1   
http://mathgen.stats.ox.ac.uk/impute/impute_v1.html 
 
 



Common allele = A, 
replace AA with 2 
 
Rare allele = B, 
replace BB with 0 
 
Heterozygotes AB, 
replace with 1. 
 
Eliminate 
monomorphic 
markers 

=COUNTIF(B2:B142, “AA”) 



Baldo et al., 2011.  AlleleCoder: a PERL script for coding codominant 
polymorphism data for PCA analysis. Plant Genetic Resources, 
Available on CJO 2011 doi:10.1017/S1479262111000839  



Data 
 
Phenotype matrix (Y) 
 
Marker matrix (X) 
 
Kinship Matrix (A) 
 
MSA   
http://i122server.vu-wien.ac.at/MSA/MSA_download.html 

See tutorials:  
http://www.extension.org/pages/32370/ 
 
 
 
 



Software Resources 
 
Structure 
 PCA 
 STRUCTURE http://pritch.bsd.uchicago.edu/structure.html 
 see tutorials: http://www.extension.org/pages/32492/ 
 
Kinship 
 SPAGeDi 
 MSA  http://i122server.vu-wien.ac.at/MSA/MSA_download.html 

 See tutorials: http://www.extension.org/pages/32370/ 
LD 
 Tassel www.maizegenetics.net/tassel/ 
 GGT 2.0   www.plantbreeding.wur.nl/UK/software_ggt.html 
 GOLD (Graphical Overview of Linkage Disequilibrium) 
 http://www.sph.umich.edu/csg/abecasis/GOLD/ 



Software Resources 
 
Haplotypes 
 PHASE (for short-range haplotypes) 
 http://www.stat.washington.edu/stephens/software.html 
 see practical exercises in: 
 www.ans.iastate.edu/section/abg/shortcourse/notes.pdf 
Association Analysis and Genomic Selection 
 GenABLE -R library for Genome-wide association analysis 
 http://www.genabel.org/ 
 EMMA (Efficient Mixed Model Association) 
 http://mouse.cs.ucla.edu/emma/index.html 
 TASSEL http://www.maizegenetics.net/ 
 
 
 R-package BLR http://genomics.cimmyt.org/ 
 



Working Examples 



Power of association Studies  
R-package  ldDesign 
http://cran.r-project.org/web/packages/ldDesign/ 
 
ldDesign documentation 
http://cran.r-project.org/web/packages/ldDesign/ldDesign.pdf 

 
See example script under “Practical Exercises”; Hayes, 
2007.  QTL Mapping, MAS, and Genomic Selection, Short 
Course Sponsored by Dept. of Animal Sciences and Animal 
Breeding and Genetics Group, Iowa State University 
http://www.ans.iastate.edu/section/abg/shortcourse/notes.pdf 
 
Other functions: 
ld.design , ld.power, ld.sim, etc... 



Determining the power of association analysis 
using the R-package  ldDesign 

Rod Ball, Scion Research 
 

> luo.ld.power(n, p, q, D, h2, phi, Vp , alpha, 
print.it = TRUE, missclass.rate = 0)) 
 
# function = luo.ld.power after (Luo, 1998, Heredity 80, 198–208) 
# n number of individuals genotyped and phenotyped 
# p frequency of Bi-allelic marker linked to the QTL 
# q frequency Bi-allelic QTL (gneraly p = q) 
# D Linkage disequilibrium coefficient 
# r2 from LD analysis can be converted to D; D =  [p(1− p)(q(1− q)r2]1/2  

# h2 QTL `heritability‘; proportion of variance explained by the QTL (Vm/Vp)  
# phi Dominance ratio: = 0 for additive, = 1 for dominant allele effects 
# Vp phenotypic variance;  an arbitray number can be used (Vp = 100) 
# alpha Significance level for hypothesis tests 



Genomic prediction based on molecular markers 
and kinship using the BLR package in R 
Paulino Pérez, Gustavo de los Campos, José Crossa, and 
Daniel Gianola http://genomics.cimmyt.org/ 
 



 
 

See Demo Folder for Sample Scripts 



Loading Sample Data 

infilepath <- "C:/PATH/wheat.RData" 
load(infilepath) 
ls() 
# BEFORE RUNNING THE DATA FRAME LOOKS LIKE THIS 
# [1] "A"          "infilepath" "sets"       "X"          "Y" 



 
library(BLR) 
Load(wheat) 
 
y=Y[,Triat]  # selects a single column, heading Trait (set = 1),  
   # from the phenotype matrix  
 
### Creates a testing set with 100 observations 
whichNa<-sample(1:length(y),size=100,replace=FALSE) 
yNa<-y 
yNa[whichNa]<-NA 
 
### Runs the Gibbs sampler and assigns results to the object fm 
fm<-BLR(y=yNa,XL=X,GF=list(ID=1:nrow(A),A=A), 
                           prior=list(varE=list(df=3,S=0.25), 
                           varU=list(df=3,S=0.63), 
                           lambda=list(shape=0.52,rate=1e-4, 
                           type='random',value=30)), 
                           nIter=5500,burnIn=500,thin=1, 
                           saveAt="example_") 
 



#AFTER RUNNING THE DATA FRAME LOOKS LIKE THIS 
# > ls() # used to display the files in the dataframe 
# [1] "A"          "COR.trn"    "COR.tst"    "fm"         "infilepath“ 
# [6]  "MSE.trn"    "MSE.tst"    "sets"       
# [9] "whichNa"    "X"          "y"          "Y"          "yNa"  
 
 
The file fm has the information we want! 
 
>data = fm 
>attach(data) 
> ls(data) 
 [1] "bL"      "burnIn"  "fit"     "lambda"  "mu"      "nIter"   "prior"   
 [8] "SD.bL"   "SD.u"    "SD.yHat" "tau2"    "thin"    "u"       "varE"    
[15] "varU"    "weights" "whichNa" "y"       "yHat"  
 



Writing output to files 
 
> data2 = bL 
> write.csv(data2, "C:/PATH/data2.csv") 
> data3 = u 
> write.csv(data3, "C:/PATH/data3.csv") 
> data4 = yHat 
> write.csv(data4, "C:/PATH/data4.csv") 
 
 



Concluding remarks: 
 
Accurate and objective phenotypes remain a limiting factor for 
tomato 
 
Most of the changes in breeding strategy that will improve the 
power/efficiency of GWS will also improve traditional phenotype-
based breeding 
 
Use BLUPs to estimate trait values 
 
Use pedigree/kinship information to strengthen estimates of 
breeding values of individuals based on trait BLUPs 
 
Use larger populations 
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