

United States National Institute Department of of Food Agriculture and Agriculture

Solanaceae Coordinated Agricultural Project

Genomic Selection in Tomato Breeding

SolCAP Workshop, Tomato Breeders Round-Table , Ithaca, NY

David M. Francis, S.C. Sim, Heather Merk The Ohio State University Allen Van Deynze, U.C. Davis C. Robin Buell, J. Hamilton, D. Douches, Michigan State University Walter De Jong, Lucas Mueller, Cornell University

Acknowledgments:

Discussion

Dr. Jean-Luc Jannink, USDA/ARS, Ithaca, NY Dr. Clay Sneller, Dept. Hort. and Crop Science, OSU

Resources developed by

Dr. Ben Hayes, Dept. of Primary Industries, Victoria, Australia http://www.ans.iastate.edu/section/abg/shortcourse/notes.pdf

Dr. Ed Buckler and colleagues, http://www.maizegenetics.net/

Dr. Gustavo de los Campos and colleagues, http://genomics.cimmyt.org/

Overview

(1) Association Analysis

Identifying significant marker-trait linkages in complex populations

(2) Genomic Selection
 Predicting breeding value of an individual based
 on kinship and genotype

(3) Preparing Data

(4) Resources

(5) Practical Examples

At the end of this module you will be able to:

Describe Association Analysis and Genome Wide Selection (GWS)

Define and estimate a Breeding Value

Define a multiple trait index

Prepare data for AA and GWS

Know how to access demonstrations and practical exercises.

Definitions

Association Analysis

Mapping in unstructured populations

Marker Assisted Selection (MAS) Selection based on Marker-QTL linkage Direct selection Selection for coupling-phase recombination Background genome selection for accelerated BC Selection for multiple QTL, etc...

Genomic Selection (GWS)

Selection based on breeding value Random effects models and BLUPs Estimate breeding value for markers and individuals

Association Analysis

Proposed as a way to overcome limitations of working with bi-parental populations for QTL-based discovery and subsequent MAS

In complex populations the magnitude of QTL effects tend to be small

Relevance of the complex population to applied goals remains an issue (e.g. inbred lines vs hybrids)

Association Analysis

Data

Vector of trait values from phenotypic evaluation of a large complex population (best if these are BLUPs)

Matrix of Markers

Matrix of population structure (STRUCTURE or PCA)

Kinship matrix

Models can estimate the contribution of STRUCTURE and Kinship to the trait and Marker-Trait linkage...

F-test for significance = $N(1-2r)^2g^2$ N = population size; r = recombination distance (marker to QTL; g^2 = proportion of variance explained by QTL

Within the context of breeding programs, success with association analysis and therefore subsequent MAS will depend on:

(1) population structure;

(2) segregation of the trait within sub-populations;

- (3) allelic diversity for the trait of interest;
- (4) size of the population;
- (5) size of the sub-populations within the larger population;
- (6) the magnitude of the QTL (proportion of variance explained).

Recommendation:

(1) Skip association mapping in germplasm collections and focus on Nested Associated Mapping (NAM) style populations A x B; A x C; A x D; individual breeding programs, etc...

(2) Use large populations

Selecting based on molecular markers

Marker Assisted Selection - a subset of statistically significant marker—trait associations are discovered, validated and used for selection

Single markers linked to QTL Haplotypes linked to QTL

MAS – based on marker –trait linkage

Genome Wide Selection - prediction of performance without evidence of statistically significant association. Single markers Haplotypes

GWS – based on sum of breeding values estimated for all markers

Genomic selection (GS)

Selection decisions based on genomic breeding values estimated as the sum of the effects of markers across the genome (Contrast to MAS in which only markers positively associated with trait are used).

Breeding values are derived from Best Linear Unbiased Predictors (BLUPs) as the sum of BLUPs for all markers.

Can estimate the breeding value of an individual, even when there are no observations (e.g. Dairy Sire example).

Genomic Selection

Breeding Value: The part of an individual's phenotypic value that is due to additive genetic effects. The value of an individual as a parent.

Assign a breeding value to each marker, regardless of significance...

GEBV = $\sum_{i}^{n} \mathbf{X}_{i} \mathbf{g}_{i}$ Genomic Estimated Breeding Value is the sum of all marker effects for an individual

Conceptual change:

Think of the value of a line based on its potential contribution to the next cycle of breeding vs its performance (Breeding vs Seeds/Commercial)

Animal Agriculture: Dairy farms purchase sperm based on its breeding value not performance. In contrast seed is purchased based on performance.

Breeding progress is based on gain under selection.

Implications

Significance of Marker-Trait (QTL) association (linkage) is less important than the estimated breeding value

We need to start thinking about Marker-QTL linkages as random effects

effects (markers) > than phenotypic observations effects are estimated as BLUPs

Estimates of breeding value are strengthened by data from relatives, therefore pedigrees, kinship matrices, etc... improve estimates of breeding values.

Data:

Vector (or matrix) of trait-value (best if phenotypes are BLUPs) Matrix of kinship (pedigree or marker-based) n x n Matrix of Markers (n x k)

SNP scoring:

markers are scored 0 or 1; heterozygotes would be 0.5; could also be number of "common" alleles (0 = homozygous for rare allele; 1 = hetero; 2 = homozygous for common allele)

Approaches:

Step-wise regression $\gamma = \beta_0 + \beta_1 X_1 + \in; \gamma = \beta_0 + \beta_2 X_2 + \in; etc...$

Multiple linear regression $\gamma = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 \ldots \in$

Multiple linear regression with correction/penalty

Ridge Regression LASSO Bayesian (various e.g. Bayesian-LASSO, etc...)

Comparing Stepwise with Multiple Regression (statistically naïve thought experiment)

fit1 = lmer(BL	_L	.~(1 M	√ 1))	Ρ	henc	otype			Ma	rker			
ranef(fit1)	X	🚽 🍠 🔹 (2 - -		_		_	_		Pheno_Ma	rker2.csv - I	Microsoft Ex	
		File Ho	me Inse	rt Page	Layout f	Formulas	Data F	Review	/iew				
•		A1	-	. (=	f _∗ ∨∂					7			
		А	D	C	K	E	F	G	Н			K	Ī
•	1	Var	BL_Brix	mLmean	BL_L	BL_Yield	Q1	Q2	Q3	M1	M2	M3	Ī
	2	SCT 0001	-0 12629	25 255	-1.16672	-634.608	1	0	0	1	. 0) :	1
•				}	-0.62123	-9124.78	1	0	0	1	. 0) (0
fit5 = Imer(BL)		~(1	M5))	1	0.199363	12731.7	1	0	0) 1	. 0) (0
	_	. (-1.	,		0.533664	-72.2941	1	1	0) 1	. 0) (0
ranef(fit5)	6	SCT_0005	1.135688	39.60333	-0.74956	2359.417	0	1	0) 0) 1	L	1
	7	SCT_0006	0.490288	40.70278	1.117766	-3249.59	0	1	0	0) 0)	1
	8	SCT_0007	1.209455	43.38833	0.246509	-13809.5	0	1	0	0) 0)	1
	9	SCT_0008	0.743842	40.37333	-0.35346	-6572.17	0	1	0	0) 0)	1
											1	L	1
	`	1									1	L	1
fitIVIL = Imer(E	3L	_L~(1	$ M1\rangle$)+(1	IVI2)+	(1 N	13)+(1	L IVI4	+)+(1	(IVI5)	1	L	1
	10	301_0012	0.012000	42.31111	0.323233	3137.334	Ū		Ū	, U	, 1	L	1
ranet(fitivil)	14	SCT_0013	1.053081	38.40389	0.747956	-5576.61	0	1	0) 0) 1	L	1
	15	SCT_0014	0.112596	38.45389	0.649692	3343.203	0	1	0	0) 1	L	1
	16	SCT_0015	1.09446	44.69111	0.609459	-8836.92	0	1	0	0) 1	L	1
	17	SCT_0016	0.153187	37.07667	1.218044	-11030.3	0	1	0	0) 1	L	1
	18	SCT_0017	0.435006	38.88556	1.065519	4339.809	0	1	0) 0) 1	L	1
	19	SCT_0018	0.840881	37.10778	-0.19425	-10402.8	0	1	0	0) 1	L	1
	20	SCT_0019	-0.49806	37.34667	-0.64419	-746.417	1	0	0	1	. 0)	1
	21	SCT 0020	-0.04141	41.20056	0.039731	7267.14	0	1	0) 1	. 1	L :	1

Table Comparing Stepwise with Multiple Regression (statistically naïve thought experiment)

Step-W	'ise				
	M1	M2	M3	M4	M5
0	0.2003	0	0	0	0.9449
1	-0.2003	0	0	0	-0.9449
Multipl	e-Regress	ion			
0	0.1866	0.0001	0.0524	0	0.919
1	-0.1866	-0.0001	-0.0524	0	-0.919

Correction (regularization) involves introducing a penalty that places bounds on the regression

Marker homogeneous or marker-specific corrections

Ridge Regression (Tikhonov regularization) adds a constant λ to the diagonal of the matrix of coefficients makes solution unique shrinks estimates of marker effects toward 0 $\lambda = \sigma^2_{\epsilon} / \sigma^2_{\beta}$

Estimating the correction factor requires sampling the data.

Marker homogeneous correction

RR-BLUP, Estimates of marker effects are penalized to the same extent; may not be appropriate if markers are located in regions of the genome that are not associated with genetic variance

Marker-specific correction

Least Absolute Value Selection & Shrinkage Operator (LASSO-BLUP)

Bayesian Linear Regression

Conceptual Diagram of GWS (adapted from Fig. 1, Heffner, Sorrells, and Jannink, 2009. CROP SCIENCE, VOL. 49)

Genomic selection is based on a prediction of breeding value

Accuracy depends on the size of the training population, number of markers, heritability of the trait, and the number of genes contributing to the trait

We can control the population size (and composition)

The number of markers is no longer limiting (SolCAP infinium Array, Genotyping by Sequencing, etc...)

The process is iterative, with statistical models re-estimated after each cycle of phenotypic evaluation

The relative efficiency of GWS will often be lower than direct phenotypic selection; value is to select during rapid generation turn over such that multiple cycles of selection can occur. The issue of what to select for remains...

GEBV = $\sum_{i}^{n} X_{i} g_{i}$ is estimated for one trait, but how do we combine traits?

Multi Trait Index (MTI): Linear combination of observations used to compute a criterion for selection

Yield – directly valued Color – directly valued in contracts in the midwest Soluble Solids (BRIX) – value? Disease resistance – value tied to yield loss or insurance adjustment?

Selection criteria are combined into a measure of net merit weighted based on the relative importance of all traits; will differ between breeding programs due to breeding goals and market demands.

Multi Trait Index

TomatoAnalyzer - AD04 IBC 8082 S.tmt

Dpen Image

Save Fruit 🔹 🧮 Export Data 🛛 🖽 Fit size 🔹 🔊 Analyze 🚺 Revise 🔹

We can measure color as: L, a, b, Hue, chroma, G, R, B, luminosity, % red tissue, % yellow tissue, etc...

Which measurements should we select for?

PCA and Development of Multi Trait Index

	Principal Component 1					Principal Component 2				
	BC2		BC2S4		TC19F2	BC2		BC2S4		TC19F2
_	<u>Fremont</u>	Wooster	<u>Fremont</u>	<u>Wooster</u>	<u>Fremont</u>	<u>Fremont</u>	<u>Wooster</u>	<u>Fremont</u>	<u>Wooster</u>	<u>Fremont</u>
%YSD	0.4819	0.4535	0.4463	0.4157	-0.39377	-0.0267	-0.0911	-0.2147	-0.2896	0.301172
%RED	-0.4171	-0.4487	-0.401	-0.4371	0.444605	0.0485	-0.0451	0.1552	0.0994	-0.28885
L*	0.3731	0.338	0.3658	0.4263	0.110363	0.1677	0.0969	0 2416	0.0798	0.396884
a*	-0.3764	-0.3708	-0.3528	-0.1054	0.506258	0.4461	0.4675	0.4582	0.6575	0.156219
b*	0.2341	0.2807	0.3517	0.3974	0.190713	0.5801	0.5583	0.4777	0.3682	0.588045
Hue 🧲	0.5078	0.512	0.4609	0.4471	-0.43707	-0.0179	-0.0161	-0.159	-0.2279	0.347519
Chroma	0.0178	0.0198	0.2138	0.2923	0.389094	0.658	0.6707	0.6388	0.5293	0.421159
Proportion	0.5382	0.5283	0.6178	0.6228	0.517	0.3265	0.3138	0.2726	0.313	0.3333
Cumulative	-	-	-	-	-	0.8647	0.8422	0.8904	0.9358	0.8503

For three separate populations, PCA-1 is strongly weighted toward color uniformity and color while PCA-2 is weighted toward color intensity (Audrey Darrigues)

Predicted Gen. Value relative to BLUP of Phenotype (BLR package)

Preparing data for GWS

Y - Phenotype of (n) individuals estimated as BLUPs

X – Marker matrix (n x k) with (k) markers scored on proportional scale (e.g. copies of common allele)

A – Kinship or pedigree matrix (n x n)

Histogram

X – Marker Data

🗶 🛃 🧐 🕶 🖓 🗸 🖓 🗸	Copy of S	oICAPdata_Pr	ocessing.xlsx -	Microsoft Exe	cel					- 0 -×	
File Home Insert Page Layout Formulas Data Review V	/iew									∞ 🕜 🗆 🖬	£
A1 - fx SNP data source: SolCAP_Combined	v7_SolCAP	lusterfile									`
Name Box A	В	С	D	E	F	G	Н	1	J	К	Ē
1 SNP data source: SolCAP_Combined_v7_SolCAPclusterfile	Processing	Processing	Processing	Processing	Processing	Processing	Processing	Processing	Processing	Processing	Ē
2	2K1-1439	2K1-2019	2K1-2029	2K1-2054	CULBPT04-1	CULBPT04-2	CULBPT04-3	CULBPT04-4	CULBPT04-5	CULBPT-05-10	
3 Locus	SCT_0001	SCT_0002	SCT_0003	SCT_0004	SCT_0005	SCT_0006	SCT_0007	SCT_0008	SCT_0009	SCT_0010	
4 solcap_snp_sl_15058	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	
5 solcap_snp_sl_60635	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	
6 solcap_snp_sl_60604	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	
7 solcap_snp_sl_15056	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	
8 solcap_snp_sl_15055	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	
9 solcap_snp_sl_15054	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	
10 solcap_snp_sl_15052	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	
11 solcap_snp_sl_15051	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	
12 solcap_snp_sl_15050	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	
13 solcap_snp_sl_15049	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	
14 CL004303-0524	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	
15 solcap_snp_sl_24809	BB	BB	BB	BB		AA	AA	AA	AA	AA	
16 CL016197-0363_solcap_snp_sl_60559	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	
17 solcap_snp_sl_60557	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	
18 solcap_snp_sl_15046	BB	BB	BB	BB	AA	AA	AA	AA	AA	AA	
19 solcap_snp_sl_15039	AA	AA	AA	AA	BB	BB	BB	BB	BB	BB	
20 solcap_snp_sl_33745	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	
21 solcap_snp_sl_60513	AA	BB	AB	AB	BB	BB	BB	BB	BB	BB	
22 solcap_snp_sl_24801	BB	AA	AB	AB	AA	AA	AA	AA	AA	AA	
23 solcap_snp_sl_24799	BB	AA	AB	AB	AA	AA	AA	AA	AA	AA	
24 solcap_snp_sl_24797	BB	AA	AB	AB	AA	AA	AA	AA	AA	AA	
25 CL017102-0111	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	
26 solcap_snp_sl_33737	AA	AA	AA	AA	AA	AA	AA	AA	AA	AA	
27 solcap_snp_sl_33736	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	
28 solcap_snp_sl_60446	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	
29 solcap_snp_sl_60432	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	
30 solcap_snp_sl_24794	BB	AA			AA	AA	AA	AA	AA	AA	
31 solcap_snp_sl_60417	BB	BB	BB	BB	BB	BB	BB	BB	BB	BB	Ļ
If ← → H AB coding / Allele coding / 2										 ▶∏	Ê

Delete rows with redundant or unnecessary information

coding / 💭 /		9 • (*	- -		-	10 and 10		and the set	Во	ok3 - Micro	osoft Excel				-					X
	F	ile Home	e Insert	Page Layout	Formulas	Data	Review	View											v 🕜 (
	San di Pro	A1	- (e	f _x SI	NP data sou	rce: SolCAF	P_Combine	ed_v7_Sol	APcluster	file										~
-		А	ВС	D	E	F	G	н	1	J	К	L	м	N	0	Р	Q	R	S	
	1	SNP data so	urce: Sol Locus	solcap_	sn solcap_s	sn solcap_s	n solcap_	sn solcap_s	sn solcap_s	n solcap_	sn solcap_s	in solcap_s	sn solcap_s	n CL00430	3- solcap_s	n CL01619	7- solcap_	sn solcap_	sn solcap	sn sol
Niarker —	2	Processin ₂	K1-1439 SCT_0	0001 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	BB	AA	BB	BB	AA	AA
T V IGHTCI	3	Processin ₍ 2	K1-2019 SCT_0	0002 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	BB	AA	BB	BB	AA	AA
	4	Processin _[2	K1-2029 SCT_0	0003 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	BB	AA	BB	BB	AA	AA
	5	Processin ₁ 2	K1-2054 SCT_0	0004 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	BB	AA	BB	BB	AA	AA
	6	Processin ₍ C	ULBPT04 SCT_0	0005 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA		AA	BB	AA	BB	AA
	7	Processin(C	ULBPT04 SCT_C	0006 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	AA	AA	BB	AA	BB	AA
X	8	Processin ₍ C	ULBPT04 SCT_0	0007 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	AA	AA	BB	AA	BB	
	9	ProcessingC	ULBPT04 SCT_C	0008 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	AA	AA	88	AA	BB	
	10	ProcessingC	ULBPT04 SCT_C	009 AA	BB	BB DD	AA	BB	BB	BB	AA	AA	AA	AA		AA	BB DD		BB	
° Ø _A	11	ProcessingC	ULBPT-0:SCT_0	011 44	DD	DD		DD	DD	DD		AA AA	AA AA	AA AA	AA AA	AA AA	DD		DD	
1/)_	12	ProcessingC	ULBPT-0:SCT_C		BB	BB	AA AA	BB	BB	BB	AA AA	AA AA	44	AA AA	AA AA	AA	BB	AA AA	BB	~~~
J.	14	ProcessingC	ULBPT-0:SCT_0	013 44	BB	BB	44	BB	BB	BB	AA	AA	44	AA	AA	AA	BB		BB	
X)_	15	Processin	ULBPT-0'SCT	014 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	BB	AA	BB	BB	AA	AA
	16	Processin	ULBPT-0SCT	015 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	AA	AA	BB	AA	BB	AA
С.	17	ProcessingC	ULBPT-0:SCT	016 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	AA	AA	BB	AA	BB	AA
	18	Processin _C	ULBPT-05SCT	017 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	AA	AA	BB	AA	BB	AA
$\sim \Delta$	19	Processin ₍ C	ULBPT-A-SCT_0	018 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	BB	AA	BB	BB	AA	AA
$\mathcal{O}_{\mathcal{A}}$	20	Processin	3259 SCT_0	0019 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	BB	AA	BB	BB	AA	AA
O'X	21	Processin ₍ E	6203 SCT_0	0020 BB	BB	BB	BB	AA	AA	AA	BB	BB	BB	AA	AA	AA	BB	BB	AA	BB
1(2)	22	Processin ₍ F	02-7530 SCT_0	0021 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	BB	AA	BB	BB	AA	AA
·Q·	23	Processin ₍ F	03-6331 SCT_0	0022 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	BB	AA	BB	BB	AA	AA
	24	Processin ₍ F	03-7463 SCT_0	0023 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	BB	AA	BB	BB	AA	AA
	25	Processin ₍ F	06-1013- SCT_0	0024 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	BB	AA	BB	BB	AA	AA
	26	Processin ₍ F	06-1014-:SCT_0	0025 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	BB	AA	BB	BB	AA	AA
	27	Processin ₍ F	06-2041 SCT_0	0026 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	BB	AA	BB	BB	AA	AA
	28	Processin ₍ F	06-2054 SCT_0	027 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	BB	AA	BB	BB	AA	AA
	29	Processinį F	UD-2058 SCT_0	028 AA	BB	BB	AA	BB	BB	BB	AA	AA	AA	AA	BB	AA	BB	BB	AA	AA
	30	Processin H	002-106 SCT_0	1029 AA	00	DD	DD		AA AA	AA AA	DD	DD DD	00	AA AA	AA AA	AA	DD	DD		
	31	FIDLESSIN	em2 1/0/3CT_0	JUJU DD	DD 								DD	AA 		AA 				AA V
	14 -	▶ ► Shee	et1 / Sheet2 /	Sheet3 🖉 🕄								- I 4								

1:24 PM

Missing Data

Eliminate markers with >20% missing data Impute alleles for markers with missing data using data for flanking markers (organize the markers by physical or genetic map)

Tools PLINK http://pngu.mgh.harvard.edu/~purcell/plink/pimputation.shtml MATCH http://www.sph.umich.edu/csg/abecasis/MACH/tour/imputation.html IMPUTEv1 http://mathgen.stats.ox.ac.uk/impute/impute_v1.html Common allele = A, replace AA with 2

Rare allele = B, replace BB with 0

Heterozygotes AB, replace with 1.

Eliminate monomorphic markers

=COUNTIF(B2:B142, "AA")

117	SCT_0118	AA	BB	BB	AA	BB	BB	BB	
118	SCT_0119	AA	BB	BB	AA	BB	BB	BB	
119	SCT_0120	AA	BB	BB	AA	BB	BB	BB	
120	SCT_0121	AA	BB	BB	AA	BB	BB	BB	
121	SCT_0122	AA	BB	BB	AA	BB	BB	BB	
122	SCT_0123	AA	BB	BB	AA	BB	BB	BB	
123	SCT_0124	AA	BB	BB	AA	BB	BB	BB	
124	SCT_0125	AA	BB	BB	AA	BB	BB	BB	
125	SCT_0126	AA	BB	BB	AA	BB	BB	BB	
126	SCT_0127	AA	BB	BB	AA	BB	BB	BB	
127	SCT_0128	AA	BB	BB	AA	BB	BB	BB	
128	SCT_0129	AA	BB	BB	AA	BB	BB	BB	
129	SCT_0130	AA	BB	BB	AA	BB	BB	BB	
130	SCT_0131	BB	BB	BB	BB	AA	AA	AA	
131	SCT_0132	AA	BB	BB	AA	BB	BB	BB	
132	SCT_0133	AA	BB	BB	AA	BB	BB	BB	
133	SCT_0134	AA	BB	BB	AA	BB	BB	BB	
134	SCT_0135	AA	BB	BB	AA	BB	BB	BB	
135	SCT_0136	AA	BB	BB	AA	BB	BB	BB	
136	SCT_0137	AA	BB	BB	AA	BB	BB	BB	
137	SCT_0138	BB	BB	BB	BB	AA	AA	AA	
138	SCT_0139	AA	BB	BB	AA	BB	BB	BB	
139	SCT_0140	AA	BB	BB	AA	BB	BB	BB	
140	SCT_0141	AA	BB	BB	AA	BB	BB	BB	
141	SCT_0142	АА	BB	BB	AA	BB	BB	BB	
142	SCT_0478	AA	BB	BB	AA	BB	BB	BB	
143		130	> 0	> 0	130	10	10	1	10
144									
14 4	C ► ► Sh	eet1 She	et2 / She	et3 / 🔁 /					

Colored dealling the second second SMTED and the second second

122	SCI_0123	2	2	2	2	2	2	2	2	2	2	2	
123	SCT_0124	2	2	2	2	2	2	2	2	2	2	2	
124	SCT_0125	2	2	2	2	2	2	2	2	2	2	2	
125	SCT_0126	2	2	2	2	2	2	2	2	2	2	2	
126	SCT_0127	2	2	2	2	2	2	2	2	2	2	2	
127	SCT_0128	2	2	2	2	2	2	2	2	2	2	2	
128	SCT_0129	2	2	2	2	2	2	2	2	2	2	2	
129	SCT_0130	2	2	2	2	2	2	2	2	2	2	2	
130	SCT_0131	0	0	0	0	0	0	0	0	2	0	2	
131	SCT_0132	2	2	2	2	2	2	2	2	2	2	2	
132	SCT_0133	2	2	2	2	2	2	2	2	2	2	2	
133	SCT_0134	2	2	2	2	2	2	2	2	2	2	2	
134	SCT_0135	2	2	2	2	2	2	2	2	2	2	2	
135	SCT_0136	2	2	2	2	2	2	2	2	2	2	2	
136	SCT_0137	2	2	2	2	2	2	2	2	2	0	0	
137	SCT_0138	0	0	0	0	0	0	0	0	2	0	2	
138	SCT_0139	2	2	2	2	2	2	2	2	2	2	2	
139	SCT_0140	2	2	2	2	2	2	2	2	2	0	0	
140	SCT_0141	2	2	2	2	2	2	2	2	2	2	2	
141	SCT_0142	2	2	2	2	2	2	2	2	2	2	2	
142	SCT_0478	2	2	2	2	2	2	2	2	2	2	2	
143		130	130	10	10	10	130	130	130	141	23	14	
144													
145													
146													
					L								i

Baldo et al., 2011. AlleleCoder: a PERL script for coding codominant polymorphism data for PCA analysis. Plant Genetic Resources, Available on CJO 2011 doi:10.1017/S1479262111000839

Data

```
Phenotype matrix (Y)
```

Marker matrix (X)

Kinship Matrix (A)

MSA http://i122server.vu-wien.ac.at/MSA/MSA_download.html See tutorials: http://www.extension.org/pages/32370/

Software Resources

<u>Structure</u>

PCA

STRUCTURE http://pritch.bsd.uchicago.edu/structure.html see tutorials: http://www.extension.org/pages/32492/

<u>Kinship</u>

SPAGeDi MSA http://i122server.vu-wien.ac.at/MSA/MSA_download.html See tutorials: http://www.extension.org/pages/32370/

LD

Tassel www.maizegenetics.net/tassel/ GGT 2.0 www.plantbreeding.wur.nl/UK/software_ggt.html GOLD (Graphical Overview of Linkage Disequilibrium) http://www.sph.umich.edu/csg/abecasis/GOLD/

Software Resources

GAPIT

<u>Haplotypes</u>

PHASE (for short-range haplotypes)

http://www.stat.washington.edu/stephens/software.html see practical exercises in:

www.ans.iastate.edu/section/abg/shortcourse/notes.pdf

Association Analysis and Genomic Selection

GenABLE -R library for Genome-wide association analysis

http://www.genabel.org/

EMMA (Efficient Mixed Model Association) http://mouse.cs.ucla.edu/emma/index.html

TASSEL http://www.maizegenetics.net/

R-package BLR http://genomics.cimmyt.org/

Working Examples

Power of association Studies R-package IdDesign http://cran.r-project.org/web/packages/IdDesign/

IdDesign documentation

http://cran.r-project.org/web/packages/ldDesign/ldDesign.pdf

See example script under "Practical Exercises"; Hayes, 2007. QTL Mapping, MAS, and Genomic Selection, Short Course Sponsored by Dept. of Animal Sciences and Animal Breeding and Genetics Group, Iowa State University http://www.ans.iastate.edu/section/abg/shortcourse/notes.pdf

Other functions: Id.design , Id.power, Id.sim, etc... Determining the power of association analysis using the R-package IdDesign Rod Ball, Scion Research

> luo.ld.power(n, p, q, D, h2, phi, Vp , alpha, print.it = TRUE, missclass.rate = 0))

function = luo.ld.power after (Luo, 1998, Heredity 80, 198–208) # *n* number of individuals genotyped and phenotyped # p frequency of Bi-allelic marker linked to the QTL # *q* frequency Bi-allelic QTL (gneraly p = q) # D Linkage disequilibrium coefficient # r² from LD analysis can be converted to D; $D = [p(1-p)(q(1-q)r^2)^{1/2}]^{1/2}$ # h2 QTL `heritability'; proportion of variance explained by the QTL (Vm/Vp) *# phi* Dominance ratio: = 0 for additive, = 1 for dominant allele effects # Vp phenotypic variance; an arbitray number can be used (Vp = 100) # *alpha* Significance level for hypothesis tests

Genomic prediction based on molecular markers and kinship using the BLR package in R Paulino Pérez, Gustavo de los Campos, José Crossa, and Daniel Gianola http://genomics.cimmyt.org/

GENOMIC SELECTION AND PREDICTION IN PLANT BREEDING

ICIMMYT

Compute	er ► Local Disk (C:) ► Users ► francis.77 ► My [Documents ► R ► w	vin-library ▶ 2.13 ▶ I	BLR 🕨	
Organize 🔻 Include in	n library 🔻 Share with 💌 Burn New fo	lder			
☆ Favorites	Name	Date modified	Туре	Size	
🐌 Downloads	data	9/28/2011 2:44 PM	File folder	_	
🖳 Recent Places	🌗 demo	9/28/2011 2:44 PM	File folder		
🧮 Desktop	🍌 help	9/28/2011 2:44 PM	File folder	_	

9/28/2011 2:44 PM

File folder

File folder

File folder

File folder

18 KB

1 KB

1 KB

2 KB

1 KB

File

File

File

File

File

See Demo Folder for Sample Scripts

Libraries

Music

🛃 Videos

💻 Computer

📬 Network

두 Local Disk (C:)

PAG XIX (E:)

Res (\\CSS-PVAULT

Pictures

Documents

html

libs

R

Meta

COPYING

INDEX

MD5

DESCRIPTION

NAMESPACE

Loading Sample Data

```
infilepath <- "C:/PATH/wheat.RData"
load(infilepath)
ls()
# BEFORE RUNNING THE DATA FRAME LOOKS LIKE THIS
# [1] "A" "infilepath" "sets" "X" "Y"</pre>
```



```
library(BLR)
Load(wheat)
```

```
### Creates a testing set with 100 observations
whichNa<-sample(1:length(y),size=100,replace=FALSE)
yNa<-y
yNa[whichNa]<-NA</pre>
```

#AFTER RUNNING THE DATA FRAME LOOKS LIKE THIS
> ls() # used to display the files in the dataframe
[1] "A" "COR.trn" "COR.tst" "fm" "infilepath"
[6] "MSE.trn" "MSE.tst" "sets"
[9] "whichNa" "X" "y" "Y" "yNa"

The file fm has the information we want!

>data = fm
>attach(data)
> ls(data)
[1] "bL" "burnIn" "fit" "lambda" "mu" "nIter" "prior"
[8] "SD.bL" "SD.u" "SD.yHat" "tau2" "thin" "u" "varE"
[15] "varU" "weights" "whichNa" "y" "yHat"

Writing output to files

```
> data2 = bL
```

> write.csv(data2, "C:/PATH/data2.csv")

> data3 = u

- > write.csv(data3, "C:/PATH/data3.csv")
- > data4 = yHat
- > write.csv(data4, "C:/PATH/data4.csv")

Concluding remarks:

Accurate and objective phenotypes remain a limiting factor for tomato

Most of the changes in breeding strategy that will improve the power/efficiency of GWS will also improve traditional phenotype-based breeding

Use BLUPs to estimate trait values

Use pedigree/kinship information to strengthen estimates of breeding values of individuals based on trait BLUPs

Use larger populations

Acknowledgments

Collaborators, OSU

Heather Merk Sung-Chur Sim Troy Aldrich Matt Robbins Audrey Darrigues Collaborators, MSU

> David Douches C Robin Buell John Hamilton Kelly Zarka

Funding

USDA/AFRI

This project is supported by the Agriculture and Food Research Initiative of USDA's National Institute of Food and Agriculture.

Collaborators, Cornell

Walter de Jong Lucas Mueller Joyce van Eck Naama Menda

Collaborators, UCD

Allen Van Deynze Kevin Stoffel Alex Kozic Industry Collaborators Cindy Lawley

Martin Ganal

Collaborators, UIB

Hipolito Medrano Pep Cifre Josefina Bota Miquel Angel Conesa

PBG Webinar Series

- Putting research into practice
- Suggest topics
- Sign up to present

PBGworks

Home of the Plant Breeding and Genomics Community of Practice

United States Department of Agriculture

National Institute of Food and Agriculture

Contact: Heather Merk merk.9@osu.edu