
GWAS	
 on	
 your	
 notebook:	

Semi-­‐parallel	
 linear	
 and	
 logis9c	
 regression	
 	

Presented by

Hosted by
Shawn Yarnes

Plant Breeding and Genomics

Karolina Sikorska
Department of Biostatistics,

Erasmus Medical Centre in Rotterdam

	

GWAS on your notebook
Semi-parallel linear and logistic regression

Karolina Sikorska and Paul Eilers

Erasmus MC, Rotterdam, The Netherlands

September 12, 2013

Motivation

• Analysis of GWAS usually involves computing clusters

• Parallel computing

• Organization of the SNP data not efficient

• Difficult to extract blocks of SNPs

Our goals

• Speed-up computations by using matrix operations
(semi-parallel computing)

• Rearrange data structure using matrix oriented binary files

• Make GWA scans feasible on a notebook

PC, software and speed

• Our PC: Intel i5-3470, 3.20 GHz, 8 GB RAM

• R software, 64-bit version 3.0.0

• We measure speed:
• n individuals, m SNPs

• t - time to complete the job (proc.time)

• speed: v = mn/t

• units - sips (SNPs times individual per second)

• Numbers are big so we use Msips

• Flexible to recalculate for different n and m

Outline

• Part I: Linear regression

• Part II: Logistic regression

• Part III: Data access

Part I: Linear regression

Linear regression

Simple model (no covariates):

y = α + βs+ε

Most straightforward: function lm in a loop

GWA analysis in a loop using lm

Simulate the data

set.seed(2013)

n = 10000

m = 10000

S = matrix(2 * runif(n * m), n, m)

y = rnorm(n)

Analyze

t0 = proc.time()[1]

beta = rep(NA, m)

for(i in 1 : m) {

mod1 = lm(y ~ S[, i])

beta[i] = mod1$coeff[2]

}

t1 = proc.time()[1] - t0

speed = (m * n)/(t1 * 1e06)

cat(sprintf("Speed: %2.1f Msips\n", speed))

Speed: 1 Msips (For 10K individuals and 1M SNPs ≈ 3 hours)

GWA in a loop using lsfit

beta = rep(NA, m)

for(i in 1 : m) {

mod1 = lsfit(S[, i], y)

beta[i] = mod1$coeff[2]

}

Speed: 6.9 Msips

Explicit solution, still loop

Solution for β̂:

β̂ =
∑n

i=1(si−s̄)(yi−ȳ)∑n
i=1(si−s̄)2

beta = rep(NA, m)

yc = y - mean(y)

for(i in 1 : m){

sc = S[, i] - mean(S[, i])

beta[i] = sum(sc * yc) / sum(sc ^ 2)

}

Speed: 45 Msips

Semi-parallel computations

• Note that β̂ =
∑n

i=1 ỹ s̃∑n
i=1 s̃

2 , where s̃ and ỹ are centered s and y

• Take S: block of k SNPs

• Vector of k β̂’s computed at once by yT S̃/colSums(S̃2)

• Semi-parallel regression (SPR)

• Many SNPs analyzed in parallel but on the same computer

SPR in R using scale

yc = y - mean(y)

Sc = scale(S, center = TRUE, scale = FALSE)

s2 = colSums(Sc ^ 2)

beta = crossprod(yc, sc)/s2

Speed: 32 Msips. Scale function is slow.

SPR avoiding scale

We center SNP matrix ourselves

yc = y - mean(y)

s1 = colSums(S)

e = rep(1, n)

Sc = S - outer(e, s1/n)

beta = crossprod(yc, Sc)/colSums(Sc ^ 2)

Speed: 130 Msips

More tricks
Centering not necessary.

n∑
i

ỹi (si − s̄) =
n∑
i

ỹi si − s̄
n∑
i

ỹi =
n∑
i

ỹi si .

n∑
i

(si − s̄)2 =
n∑
i

s2
i − n(s̄)2

yc = y - mean(y)

s1 = colSums(S)

s2 = colSums(S ^ 2)

beta = crossprod(yc, S)/(s2 - (s1 ^ 2)/ n)

Speed: 220 Msips.
10K individuals, 1M SNPs done within a minute
(compare to 3 hours)

Regression with covariates
Model:

y = βs + Xγ + ε

• Assume that X includes intercept

• Easily added to lm (or lsfit), but note how it affects the speed

●

●

●

●

●

● ●

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of covariates

S
pe

ed
 (

M
si

ps
)

of
 lm

Regression with covariates - projections

If we introduce:

s∗ = s − X (XTX)−1XT s

y∗ = y − X (XTX)−1XT y

β̂ is a solution of new model

y∗ = βs∗ + ε

Solved by very simple formula

β̂ =
∑n

i s
∗
i y

∗
i /
∑n

i s
∗2
i

SPR with covariates

n = 10000

m = 10000

k = 30

S = matrix(2 * runif(n *m), n , m)

X0 = matrix(rnorm(n * k), n, k)

X = cbind(1, X0)

y = rnorm(n)

transform y

U1 = crossprod(X, y)

U2 = solve(crossprod(X), U1)

ytr = y - X %*% U2

Transform all SNPs at once

U3 = crossprod(X, S)

U4 = solve(crossprod(X), U3)

Str = S - X %*% U4

compute slopes

b = crossprod(ytr, Str)/colSums(Str ^ 2)

Standard errors and p-values

Given model

y∗ = βs∗ + ε

the variance of β̂ is estimated by

var(β̂) = σ̂2(s∗T s∗)−1

Errors variance:

σ̂2 = RSS
n−k−2

RSS =
∑n

i y
∗2
i − β̂2

∑n
i s

∗2
i

Standard errors and p-values in SPR

S_sq = colSums(Str ^ 2)

RSS = sum(ytr ^ 2) - b ^ 2 * S_sq

sigma_hat = RSS/(n - k - 2)

error = sqrt(sigma_hat/ S_sq)

pval = 2 * pnorm(-abs (b / error))

Final speed comparison

k lm lsfit SPR
2 0.9 3.2 50
5 0.7 2.3 45

10 0.6 1.6 40
30 0.3 0.5 20

10K individuals, 1M SNPs, 10 covariates done within 5 minutes.

Missing data
• Missing response not a problem

• Missing SNPs more difficult (however not common with
recent imputations)

• SPR does not allow for “NA” in a SNP block

• Our solution: impute missing genotypes with a sample mean

• It works well (example with n = 1000, and missingness rate
5%)

0 5 10 15

0
5

10
15

−log10(p) missing SNPs removed

−
lo

g1
0(

p)
 m

is
si

ng
 S

N
P

s
im

pu
te

d

Part II: Logistic regression

Estimation in logistic regression

• Model

log

(
p

1−p

)
= β0 + β1s

• GLM framework, typically fitted with maximum likelihood

• Iterative procedure (Newton-Raphson)

• 4-5 times slower than least squares

• Not possible to (semi-)parallelize

• Our proposal: Write ML as iteratively reweighted least squares

Logistic regression in R

S = matrix(2 * runif(n * m), n , m)

y = rbinom(n, size = 1, prob = c(0.5, 0.5))

beta = rep(NA, m)

t0 = proc.time()[1]

for(i in 1 : m){

mod1 = glm(y ~ S[, i], family = binomial(link = logit))

beta[i] = summary(mod1)$coef[2 , 1]

}

t1 = proc.time()[1] - t0

speed = (m * n)/(t1 * 1e06)

cat(sprintf("Speed: %2.1f Msips\n", speed))

Speed: 0.2 Msips

Iteratively reweighted least squares

Write maximum likelihod equation for (t+1)th iteration as:

(XTW (t)X)β(t+1) = XTW (t)z(t),

where

z
(t)
i = log

(
p

(t)
i

1−p
(t)
i

)
+

yi−p
(t)
i

p
(t)
i (1−p

(t)
i)

and W (t) is diagonal matrix with elements p
(t)
i (1 − p

(t)
i)

cov(β̂(t+1)) = (XTW (t)X)−1

Iteratively reweighted least squares (equivalent to glm)

ps = rep(mean(y), n)

X = cbind(1, s)

for(i in 1:20) {

wi = ps * (1 - ps)

W = diag(wi, n, n)

zi = log(ps/(1 - ps)) + (y - ps)/wi

M1 = t(X) %*% W %*% X

M2 = solve(M1)

bethat = M2 %*% t(X) %*% W %*% zi

b0 = bethat[1]

b1 = bethat[2]

num1 = exp(b0 + b1 * s)

ps = num / (1 + num)

}

varhat = sqrt(diag(M2))

Semi-parallel logistic regression

• In principle weights are SNP-dependent

• Exact semi-parallel approach cannot be applied

• But SNP effects are very small

• Weights from the model without SNP are almost final

• Treat SNP as perturbation to that model

SP logistic regression without covariates

SNP effect from weighted least squares

β̂1 =

∑
i wi (zi − zw)(si − sw)∑

i wi (si − sw)2

var(β1) =
1∑

i wi (si − sw)2
,

with sw =
∑

i wi si/
∑

i wi and zw =
∑

i wizi/
∑

i wi

• wi are the same for all individuals

• Formula for β̂1 same like for linear regression

SP logistic regression without covariates in R

p = mean(y)

w = p * (1 - p)

z = log(p / (1 - p)) + (y - p) / w

zc = z - mean(z)

s1 = colSums(S)

s2 = colSums(S ^ 2)

den = s2 - s1 ^ 2/n

b = crossprod(zc, S) / den

err = sqrt(1 / (w[1] * den))

pval = 2 * pnorm (-abs(b / err))

Speed: 150 Msips. More than 500 times faster than glm

Precision of SP logistic regression

Odds ratios simulated between 1 and 5. Sample size 2000.

1 2 3 4 5 6

1
2

3
4

5
6

OR semi−parallel

O
R

 g
lm

0 20 40 60
0

10
30

50
−log10(pval) semi−parallel

−
lo

g1
0(

pv
al

)
gl

m

Logistic regression with covariates

Similar to linear regression, but incorporating weights.

s∗ = s − X (XTWX)−1XTWs,

z∗ = z − X (XTWX)−1XTWz ,

Solution given by:

β1 =

∑
i wiz

∗
i s

∗
i∑

i wi s∗2
i

,

var(β1) =
1∑

i wi s∗2
i

.

Here weights are different between individuals.

SP logistic regression in R

mod0 = glm(y ~ X, family = binomial(link = logit))

p = mod0$fitted

w = p * (1 - p)

z = log(p / (1 - p)) + (y - p)/w

Xtw = t(X * w)

U1 = Xtw %*% z

U2 = solve(Xtw %*% X, U1)

ztr = z - X %*% U2

U3 = Xtw %*% S

U4 = solve(Xtw %*% X, U3)

Str = S - X %*% U4

Str2 = colSums(w * Str ^ 2)

beta1 = crossprod(ztr * w, Str) / Str2

error1 = sqrt(1 / Str2)

pval1 = 2 * pnorm(-abs (beta1/ error1))

Logistic regression - speed comparisons

k glm SP
1 0.2 57

10 0.1 35
20 0.1 28

10K individuals, 1M SNPs and 10 covariates done within 5 minutes
(instead of 28 hours)

Part III: Efficient data access

Efficient data access

• We can do the computations very fast

• But first we need to access the data

• ALL SNP data do not fit into memory

• We need blocks of SNPs for all individuals

• Size of the block memory dependent

Reading blocks from text files

• MACH files are just text files

• Typically written as “row per person”

• Written on a disc as one chain

• With all SNPs for an individual as a record

• Difficult to access block of SNPs for all individuals

• We could transpose the file and use (slow function) scan

• Does not seem to be efficient solution

Binary files

• Much faster to access than text files

• Easily created in R (using writeBin and readBin)

• Not convienient because work on vectors

• “row per person” structure is still a problem

Array-oriented binary files

• Saved column-by-column

• A SNP for all individuals makes a record

• In R, ncdf and ff packages are useful (there are others)

MACH to binary matrix

SNP1SNP2 SNP3 SNP1SNP2SNP3 SNP1 SNP2SNP3

ID1 ID2 ID3

ID1 ID2 ID3 ID1 ID2 ID3 ID1 ID2 ID3

SNP1 SNP2 SNP3

Package ncdf - writing files

library(ncdf)

setwd(" ")

set.seed(2013)

fname = "Ncdf_1.ncdf"

total number of individuals

N = 10000

number of individuals that we can read

from text file at once

n = 1000

number of SNPs in the file

m = 100000

snps = matrix(2 * runif(m * n), n , m)

Ncdf - writing files cont’d

Define dimensions

dimx = dim.def.ncdf("x", "units", 1 : N)

dimy = dim.def.ncdf("y", "units", 1 : m)

Define variables

varz = var.def.ncdf("z", "numeric", dim = list(dimx, dimy),

missval = 999, prec ="short")

Create the netCDF file

netf = create.ncdf(fname, vars = list(varz))

Store data

snps1 = 100 * snps

nb = N / n

for(i in 1 : nb) {

k = n * (i - 1) + 1

put.var.ncdf(netf, varz, vals = snps1,

start = c(k, 1), count = c(n, m))

cat(’Block’, i, ’\n’)

}

close(netf)

Ncdf - writing cont’d

• It takes 10 minutes to write 100K SNPs for 10K individuals

• We used SSD drive

• 5 times faster than hard disc

• We simulated the data

• Time for “scanning” should be added

• Note that it needs to be done only once

• Take care of details: saving as “short” saves lot of disc space

Ncdf - reading blocks

library(ncdf)

setwd(" ")

fname = "Ncdf_1.ncdf"

netf = open.ncdf(fname)

N = 10000

m = 100000

m1 = 10000

nb = m / m1

for(i in 1 : nb){

t0 = proc.time()[3]

k = (i - 1) * m1 + 1

snps_read = get.var.ncdf(netf, "z",

start = c(1 , k), count = c(N , m1))

t1 = proc.time()[3] - t0

cat("Block", i, "read within", t1, "seconds \n")

}

Ncdf - reading blocks

• Takes around 4 seconds per block of 10K SNPs

• Which give 400 seconds for 1M SNPs

• Computations take around 200 seconds

• Note that we measured elapsed time here (proc.time()[3])

FF package - writing files

library(ff)

setwd(" ")

fname = "ff_1.ff"

N = 10000

n = 1000

m = 100000

snps = matrix(2 * runif(m * n), n , m)

FF = ff(vmode = "short", dim = c(N, m), filename = fname)

snps1 = 100 * snps

nb = N / n

FF package - writing files cont’d

for(i in 1 : nb){

k = (i - 1) * n + 1

l = k + n - 1

FF[k : l,] = snps1

cat("Block" , i, "\n")

}

finalize(FF)

close(FF)

save(FF, file = "ff_1.RData")

FF - reading blocks

load("ff_1.RData")

nb = m / m1

for(i in 1 : nb) {

t0 = proc.time()[3]

k = (i - 1) * m1 + 1

l = k + m1 - 1

snps_read = FF[, k : l]

t1 = proc.time()[3] - t0

cat("Block", i, "read within", t1, "seconds \n")

}

Both saving and reading twice faster than ncdf

Summary and conclusions

• We made GWAS computations easy

• And feasible on a notebook

• Data access can be a bottleneck

• But array-oriented binary files solve the problem

• More details in our BMC Bioinformatics paper

• R codes available on https://bitbucket.org/ksikorska/gwasp

Thank you

&

Good luck with your “GWAS on your notebook”

Please	
 fill	
 out	
 the	
 survey	
 evalua9on.	
 	

You	
 will	
 be	
 contacted	
 via	
 email.	

Today’s Presentation Available
http://www.extension.org/pages/68354

Sign up for PBG News
http://pbgworks.org

Sign up for Future Webinars and View Archive

http://www.extension.org/pages/60426

	Binder2.pdf
	SYSlides
	www3.pdf

	SYSlides

