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Marker informed breeding Is many things

= Marker informed program management (MIPM — see Module 12)
— Fingerprinting, paternity analyses, characterizing population genetic
variation

= Marker assisted selection (MAS)
— Central dogma of molecular breeding involves the utilization of
molecular marker fingerprints to improve selection efficiency in plant
breeding programs (Eathington et al., 2007)
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Current status of MAS In tree Improvement

= MAS in forest trees is mostly in the discovery/research phase

= Why the slow adoption of such a promising technology?
— Highly heterozygous trees and large diverse populations
— Out-crossed species in linkage equilibrium
— Poor understanding of the genetic architecture of traits
— Lack of simply inherited traits
— Very modest proportion of the genome characterized
— Few scientists working in this area
— Little industrial investment
— High cost of program development
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Three approaches to MAS (classified by
mapping precision)

FIGURE 5
Classification of three different types of marker-trait associations relevant to Eucalyptus MAS
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Figure Credit: Modified from Grattapaglia, 2007.
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TABLE 1

Loblolly pine mapping populations and phenotypic traits for QTL analyses of physical and chemical
wood properties

Pedigree
Detection Verification Unrelated

Grandparents G X Gy Gy X Gy G X Gy Gy X Gy G; X Gy G; X Gg
Parents P, X P, P, X P, P; X Pg
Progeny 172 457 445
Trait and rings analyzed

Wood-specific gravity (ewsg, lwsg)* Rings 2-11 Rings 4-6 Rings 4-6

Percentage of late wood (% lw) Rings 2-11 Rings 4-6 Rings 4-6

Microfibril angle (emfa, imfa) Rings 3, 5, 7 Ring 6 Ring 6

Cell wall chemistry (ecwe, lewe)” Ring 5 Ring 6 Not assayed

“wsg is a measure of the total amount of cell wall substance and within an annual ring has three main
determinants: wsg of earlywood (xylem cells having thin walls and large lumens: ewsg), wsg of latewood (xylem
cells with thicker walls and smaller lumens: lwsg), and the percentage of latewood (% lw).

’Mass peaks collected from the pyrolysis molecular beam mass spectrophotometer were associated with the
amounts of a-cellulose, galactan, mannan, xylan, and lignin, collectively termed cwc traits.

Table Credit: Table used with permission of the Genetics Society of America from “ldentification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus
taeda L) Ill. QTL verification and candidate gene mapping”, Brown et al. Genetics 164: 1537-1546,2003;permission conveyed through Copyright Clearance Center, Inc.
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TABLE 2
Summary of QTL verified by repeated detection in loblolly pine

P value’ PVE’
LG  Trait Interval” Verification Unvrelated Detection Verification Unvrelated Candidate genes
1 ewsg  2146_c:2441_1 0.004* 7.2 3.0 laccase
2 lwsg  2150_A:1A7_A 0.005%* 5.4 2:3
3 ewsg  2090_2:17.65_a 0.006%* 6.6 5.2 C4H, GlyHMT, Ptal4A9
5 ewsg  15.01_a:2220_A 0.003%* 6.0 2:9
5 ewsg  2963_3:2090_4 0.004%*¢ 5.6 3.5¢ AGP6
5 %lw  2933_1:15.01_a 000k 0.006%* 1.2 5.1¢ 2.0
6 ewsg  2802_3:8972_a 0.0008%** 6.6 3.5 PAL-2
6 Plw 2874 1:8702_a 0.007* L1 5.1
8702_a:2009_a CCoAOMT
6  ecwc 2874 _1:8702_a 0.006%1 6.4 4.41
7 lwsg  1916_2:2361_2 0.0105* b.g9 2.4 C3H, 4CL, PtaAGP4
7 %lw 1916_2:2361_2 0.0006%* 6.1 24 C3H, 4CL, PtaAGP4
8 %lw  719_A:1916_4 0.004* b8 1.8
10 %lw 2145 _2:1635_A 0.005%* 8.7 2:5
12 ewsg 8542 a:3012_2 0.015% DA 2.3

“Marker interval on the consensus genetic map of loblolly pine. Markers that are underlined are common to the genetic maps
of the populations compared. Markers not underlined denote interval boundaries inferred from homologous flanking markers.

# and ** represent chromosome-wide significance at P < 0.05 and 0.01, respectively, except for marker-trait associations
detected by the two-QTL model (see footnote * below).

‘Percentage of the phenotypic variance explained by a QTL.

A QTL detected only by the two-QTL model in the verification population with significance levels as in SEWELL et al. (2000):
*,0.01 > P> 0.005; **, P< 0.005. PVE refers in this case to that explained by the pair of QTL detected.

“QTL detected by the two-QTL model in both the detection and wverification populations.

Table Credit: Table used with permission of the Genetics Society of America from “ldentification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus
taeda L) lll. QTL verification and candidate gene mapping”, Brown et al. Genetics 164: 1537-1546,2003;permission conveyed through Copyright Clearance Center, Inc.
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Three approaches to MAS (classified by
mapping precision)

FIGURE 5
Classification of three different types of marker-trait associations relevant to Eucalyptus MAS
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Figure Credit: Modified from Grattapaglia, 2007
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LD MAS / Gene MAS

= We will treat LD MAS and Gene MAS (gene assisted selection)
together here, though the distinction might be relevant under some
circumstances. We will collectively refer to the discovery
approaches for identifying LD QTL-trait associations as association
mapping or association genetics

= The fundamental distinction between association mapping and LE
QTL mapping is that the latter relies on genetic linkage following
one or two generations of crossing, while the former utilizes
historical, population-level LD

= This has enormous implications for practical application in forest
tree improvement programs

WWW.pinegenome.org/ctgn
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A loblolly pine association population

: i

Figure Credit: Barry Goldfarb, North Carolina State University
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Figure Credit: David Neale, University of California, Davis
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Assoclations between SNPs and wood
properties

= Gonzalez-Martinez et al. 2007.

— This was the first multi-gene association genetic study in forest trees to
be reported

— It demonstrated feasibility of candidate gene strategies for dissecting
complex traits

= Study details
— Genetic associations were tested between 58 SNPs from 20 candidate
genes and wood properties (specific gravity, % latewood, microfibril
angle, and wood chemistry — cellulose, lignin content) on over 400
clonally replicated individuals

— Population structure assessed (22 nuclear SSR) and kinship removed

WWW.pinegenome.org/ctgn
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Many associations were identified

= Many significant associations
were identified between wood

traits and genes known to be EWSG | LWSG | %LW | MFA
associated with lignin and Juvenile Wood
cellulose biosynthesis Transition
Wood
= Many SNPs gave consistent Mature Wood
associations with the same All Age
trait measured at different PCA
ages Total

EWSG - earlywood specific gravity; LWSG — latewood specific gravity;

u Some SN PS were COﬂSiStent %LW — percent latewood; MFA — microfibril angle
with co-location of candidates
and QTL

WWW.pinegenome.org/ctgn @
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Significant association with candidate genes for wood quality traits after correction
for multiple testing using the positive FDR method (Q-values)

Wood-age Marker effect FDR
Trait Gene SNP N
type F P R?  Q-value

ewsg transition sams-2 M44 403 6.7595 0.0013 0.0327 0.0630

all age cad M28 409 7.7480 0.0005 0.0347 0.0228
PCA cad M28 366 65945 0.0015 0.0351 0.0742
Iw transition Ip3-1 Q5 431 79007 0.0004 0.0357 0.0248

ewmfa transition a-tubulin -~ M10 374 83766 0.0040 0.0221 0.0062

PCA atubulin  M10 370 13508 0.0003 00355 0.0078

Table Credit: Table used with permission of the Genetics Society of America from “Association Genetics in Pinus Taeda L |. Wood properties”, Gonzalez-
Martinez et al. Genetics 175: 399-409, 2007; permission conveyed through Copyright Clearance Center, Inc.
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FIGURE 2. Genotypic effects (box plots) of SNPs that showed significant genetic association (after correction
for multiple testing) with earlywood specific gravity (cad SNP M28 and sams-2 SNP M44) and percentage of
latewood (Ip3-1 SNP Q5 and 4cl SNP M7 in the east of the Mississippi Valley range)
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Figure Credit: Figure used with permission of the Genetics Society of America from “Association Genetics in Pinus Taeda L |. Wood properties”, Gonzalez-
Martinez et al. Genetics 175: 399-409, 2007; permission conveyed through Copyright Clearance Center, Inc.
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ADEPT?2 re-sequencing status
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Figure Credit: Jennifer Lee, University of California, Davis

WWW.pinegenome.org/ctgn



http://www.pinegenome.org/ctgn

Finding genes associated with pitch canker
resistance
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Figure Credit: John Davis, University of Florida

WWW.pinegenome.org/ctgn



http://www.pinegenome.org/ctgn

Genes assoclated with water use efficiency,
nitrogen content, and height

Trait Heritability # of SNP % Phenotype % Genotype
(Broad) Associations Explained Explained

WUE (Carbon 0.50 £ 0.05 5-7t 7.1 ~14.2
13)

% Nitrogen 0.42 + 0.06 o* 7.0 ~16.7

Height 0.43 £ 0.05

T Gonzalez-Martinez et al., 2008, two SNPs, 7% phenotypic
variance explained
* One of these five loci explained most of the variation

WWW.pinegenome.org/ctgn @ CAP
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What have we learned from these studies?

= Both approaches — candidate gene and whole genome screens —
appear to be effective for dissecting complex traits in experimental
populations of trees

= Desirable alleles can be identified for breeding and conservation
and their breeding values and mode of action can be estimated
(effect of allelic substitution)

= Correcting for multiple testing greatly reduces the number of
associations statistically confirmed

= To the extent that testing was performed over two or more
populations, there was an encouraging level of validation

* The size of effects described is consistent with the proportion of the
genome studied

WWW.pinegenome.org/ctgn
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The future of MAS In forestry

= LD MAS and Gene MAS show promise of satisfying elements of the
vision breeders have for MAS but questions remain

— What level of gain might we expect from the addition of MAS?

— Would it be economical to do so?

— Can we verify effects? Are there G X E interactions? Do our studies
allow for dissection of epistatic effects?

— How and when would we apply association in the tree improvement
cycle?

WWW.pinegenome.org/ctgn
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Contrasting traditional selection approaches
with MAS

Method Reliability Years per Stage* Total Cycle Time %Gain* %Gain per Year

Seedling Progeny

s 0.03 5+3+1+6 15 7% 0.5%
™ 0.70 5+3+1+2+6 17 122% 7%
Mzzgc_ggjed 0.05 5+3+1 9 12% 1%
Mastgctt.)grsled 0.15 5+3+1 9 35% 4%
o 0.25 5+3+1 9 58% 6%
Marker-based 5 S o 8106 0%,

Selection

T Values refer to years for selection, grafting and breeding, raising seedlings, vegetative propagation, and field
testing, in that order. * Gain based on selection intensity of 2.33 for seedling testing and 1.75 for clonal testing.

Table Credit: Patrick Cumbi, North Carolina State University

WWwWw.pinegenome.org/ctgn
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Contrasting traditional approaches with MAS

Selection
Method

Reliability

# of

Genotypes

Field
Testing
Cost ($)

Vegetative
propagatio
n Cost ($)

Costto
Genotype
25 Markers

$)

Total
Selection
Cost ($)

% Gain*

Costper %
Gain (%)

Seedling-
g 0.03 16,000 $80,000 - - $80,000 7% $11,455

Progenyt

Clonal -
0.70 4.000 $80,000 $80,000 - $160,000 122% $1,310

Progenyt

Marker-
0.05 16,000 - - $96,042 $96,042 12% $8,251

based

Marker-
0.15 16,000 - - $96,042 $96,042 35% $2,750

based

Marker-
0.25 16,000 - - $96,042 $96,042 58% $1,650

based

Marker-
0.35 16,000 - - $96,042 $96,042 81% $1,179

based

Table Credit: Patrick Cumbi, North Carolina State University
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What Is needed to make association viable?

Can we verify effects? Are there G X E interactions? Do our studies
allow for dissection of epistatic effects? Answers to these questions
remain largely unknown and getting them will require considerably
more work.

= Appropriate populations
= Repeated trials
— Time
— Space
— Genetic background
= Whole genome scan (all or nearly all genes represented by 1 or
more SNPs, genotyped for relevant populations)
= Dedicated scientists

= Dedicated long-term funding from industrial partners

WWW.pinegenome.org/ctgn
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Association Mainline Production
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Using LD MAS plus phenotypes for forward

selection (picking superior individuals for next generation breeding)

248454
23233
A2344
2204848

4

SNP genotypes of parents and é}i
potential genotypes of progeny
at 3 loci controlling MFA (micro
fibril angle) i

Colors represent controlled
crosses (full-sib families)

Figure Credit: Nicholas Wheeler, Oregon State University.
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Locus 1 Locus 2 Locus 3 Breeding Value
) [ A
AlIA x AIT C/IG X GIG AIT X AIT
AlA 1 C/IG 1 AlA 1 FamAve: + 7.0
AlT 1 G/G 1 AlT 2 Bestind + 14
TITA1 Worstind 0

AIT X AIT CI/IC XCIG TIT X AIT
AlA 1 c/C1 AlTA1 FamAve: + 5.5
AlIT 2 C/IG 1 TI/ITA Bestind + 11
T/ITA1 Worstind 0
AIGX AIA C/IGXCIG AIT XAIT
AlA 1 C/C 1 AlA 1 FamAve: + 10
G/A 1 C/G 2 AIT 2 Bestind + 19

G/G 1 TITA1 Worstnd + 2
A=+2 C=+2 A=+4
T=0 G=0 T=A1
G=+5
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MIB 4B: Marker assisted breeding

= Using LD MAS to identify superior individuals to intermate with the
Intent of pyramiding favorable alleles at multiple loci

— Colors represent full-sib families with varying numbers of favorable
disease resistance alleles

| Field trial — Age 4 t0 8

Phenotypes of individual trees for disease resistance at 3 loci
S = Susceptible R = Resistant
R is dominant
(Assumes all R phenotypes are actually heterozygotes and SNPs exist that can distinguish all alleles)*

WWW.pinegenome.org/ctgn

Column 1 | Column 2 | Column 3 | Column 4 | Column 5
Row 1 sSS ssR sRs sSS Rss
Row 2 Rss SSS ssR RsR ssR
Row 3 RsR SRs SSS Rss RsR
Row 4 Rss SRs RsR SsR SRs

Figure Credit: Nicholas Wheeler, Oregon State University.

* Actual genotype for C1R3 is [s/R, s/s, s/R]

@ e
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MIB 5 and/or 7: Early culling - individual tree
selection to populate genetic tests

= Using LD MAS to identify superior individuals to move forward into
seedling and or clonal trials (two-stage forward selection)

Phenotypes of individual seedling / seed for disease resistance at 3 loci
s = Susceptible R = Resistant
R is dominant
(Assumes all R phenotypes are actually heterozygotes and SNPs exist that can distinguish all alleles)*

Column 1 Column 2 Column 3 Column 4 Column5

Row 1 SSS SsR SRs SSS SSS
Row 2 SRR Rss SSS Rss SSS
Row 3 SRs sRs RRR SRS SSR
Row 4 SSS SRs SSS SSS SSS

* Actual genotype for C1R3 is [s/s, S/Rsl/s]

WWW.pinegenome.org/ctgn

Figure Credit: Nicholas Wheeler, Oregon State University. @
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MIB 8: Cull existing seed orchard

Using LD MAS Plus Phenotypic Selection to Cull Seed Orchards (Backward Index Selection)
Colors represent female parent (Half-sib family)

Seed orchard

SNP Genotypes at 3 loci controlling MFA (microfibril angle)

Locus 1 Locus 2 Locus 3 Breeding
Value
A/T c/C T/T +4
A/A C/G A/T +9
A/A c/C A/A +16
A/T C/G A/A +12
A=+2 C=+2 A=+4
T=0 G=0 T=-1

Culled Orchard

WWW.pinegenome.org/ctgn

Figure Credit: Nicholas Wheeler, Oregon State University. @ CAP
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Association genetics: A review

= A comprehensive association genetics study should provide the
following (White et al. 2007)

— An estimate of the number of loci controlling quantitative traits of
interest

— An estimate of the proportion of phenotypic variation explained/locus
— An estimate of the effects of allelic substitution

— The identity and putative function of each significantly associated
gene

— The SNP allele and haplotype frequencies in the population
— The mechanism of gene action at each locus (additive, dominant)

— The genetic markers that are either the causative mutation (QTN) or
are in complete or nearly complete LD with the QTN

— Verified associations in multiple populations (breeding populations)

WWW.pinegenome.org/ctgn
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Genomic selection: An alternative to
association genetics

Markers are used to infer kinship

= |n genomic selection, markers are used to indicate the extent to
which a progeny may be related to a favorable parent. That is, what
proportion of the parent’'s genome is represented in the progeny?

= Requires as many or more SNP markers as association, but does
not require association trials themselves (populations). Work is
done directly within elite lineages

WWW.pinegenome.org/ctgn
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