Conifer Translational Genomics Network Coordinated Agricultural Project

CATTAGCTCTGN CAPCAAGTCATCCATGATTAGCT

Genomics in Tree Breeding and Forest Ecosystem Management

Module 6 – Genetic Markers

Nicholas Wheeler and David Harry – Oregon State University Jill Wegrzyn – University of California, Davis

www.pinegenome.org/ctgn

Background

- Markers denote the detection of some type of sequence variation (a polymorphism) in a stretch of DNA within or among individuals in a taxa.
- Nuclear markers reflect variation in diploid chromosomes; allelic forms segregate in a Mendelian manner
- Organelle genomes are typically inherited uniparentally (a single allele from only one parent)
 - In angiosperms, both chloroplasts and mitochondria are inherited maternally
 - In conifers (with some exceptions), chloroplasts are paternally inherited, mitochondria are maternally inherited

Historical significance of markers

- Genetic markers were key to the development of genetics as a science
- Mendelian genetics is the study of how markers are transmitted from parents to offspring
- Markers provide the empirical foundation of population genetics, with many basic and applied uses
- Until the 1970's most markers were morphological
 - A few were based on immunology (e.g., blood types) or simple chemistry
 - Few markers existed for trees

History of marker technology

Figure Credit: David Harry, Oregon State University

How are markers useful to tree geneticists

mage Credit: David Harry, Oregon State University

- Fingerprinting / quality control / IP
- Characterizing and managing seed sources
- Assessing relationships among populations and species
- Characterizing within-stand dynamics
- Parentage determination and reconstruction
- Guiding gene resource management and conservation
- Genetic mapping and phenotypic associations
- Marker informed breeding

What to consider when selecting a marker?

- Reliability and interpretability
- Level of polymorphism (variability)
- Number of markers required for the application
- Cost
- Technical requirements

Allozymes: Starch gel electrophoresis

Shikimate Dehydrogenase from *Calocedrus decurrens*

Image Credit: David Harry, Oregon State University

Figure Credit: White, T. L, W. T. Adams, and D. B. Neale. 2007. Forest genetics. CAB International, Wallingford, United Kingdom. Used with permission. <u>www.pinegenome.org/ctgn</u>

Allozyme characteristics

Advantages

- Widely adaptable across taxa
- Codominant, multi-allelic
- Low cost
- Easy to do (undergrads)
- Captures haploid diploid biology of conifer seed

Limitations

- Modest number of markers
- Some environmental influences
- Short shelf life for samples
- Manual scoring

Microsatellites SSR – (Simple sequence repeat)

CAP

TGN

Image Credit: David Harry, Oregon State University

www.pinegenome.org/ctgn

SSR characteristics

	Reveals	many	alleles	per	locus
--	---------	------	---------	-----	-------

- Co-dominant, although nulls can be troublesome
- Broadly applicable: mapping, population structure, parentage, fingerprinting
- Numerous

Advantages

Limitations

- High development costs
- Development requires technical skills: cloning, sequence, primer design (although vendors can now do this)
- Markers may not transfer easily between related taxa

Single Nucleotide Polymorphism (SNP)

SNP ↓															
Tree 1	A	С	G	Т	G	Т	С	G	G	Т	С	Т	Т	Α	Maternal chrom.
	Α	С	G	Т	G	Т	С	A	G	Т	С	Т	Т	Α	Paternal chrom.
Tree 2	A A	C C	G G	Т Т	G G	Т Т	C C	G G	G G	T T	C C	T T	Т Т	A A	Maternal chrom. Paternal chrom.
Tree 3	A A	C C	G G	T T	G G	T T	C C	A A	G G	T T	C C	T T	T T	A A	Maternal chrom. Paternal chrom.

Tree 1 is *heterozygous* Trees 2 and 3 are *homozygous*

CAP

TGN

Single Nucleotide Polymorphisms (SNPs)

Single nucleotide differences between allelic sequences

- SNP characteristics
 - Most common genetic polymorphism
 - Result from nucleotide substitutions (e.g. C to T))
 - Found in coding and non-coding DNA
 - SNPs can alter amino acids and resulting phenotype (but most are "neutral")
 - Usually bi-allelic (only two alleles per SNP locus)
 - Once assembled, haplotypes are typically multi-allelic
- Advantages of SNPs
 - Fundamental unit of inheritance
 - Codominant
 - Simplicity allows high-throughput detection

SNPs result from single-base changes

CAP

CTGN)

SNPs occur throughout the genome

Figure Credit: Glenn Howe, Oregon State University

CTGN

CAP

Finding, verifying, and using SNPs

- SNP discovery requires genetic sequence of the same chromosomal region from two or more chromosomes
- Sequence can be obtained
 - From existing sources (online)
 - By re-sequencing
 - By obtaining new DNA sequence
- Sequence processing requires several steps. Doing this for many (100's to 1000's) SNPs requires specialized bioinformatic tools
- SNP genotyping: a wide array of genotyping platforms are now available

Finding existing SNPs

Also, the National Center for Biotechnology Information, the ultimate clearing house for genomic information: www.ncbi.nlm.nih.gov

Targeted SNP discovery via re-sequencing

- Obtain DNA sequence from the region or gene of interest
- Design overlapping PCR amplicons across the entire gene
 PCR amplicon = gene fragment synthesized using PCR
- PCR-amplify the gene fragments from diverse individuals
- Use various computer programs to find and evaluate SNPs

SNP discovery: Loblolly pine example

- >3 million bases of aligned sequence
- ~40,000 SNPs detected in 7,003 unigenes
- ~6 SNPs per gene fragment (amplicon)
- Amplicon size averages 450 bp
- 1 SNP per 75 bp on average

Figure Credit: Jennifer Lee, University of California, Davis

Sample size is important for finding SNPs

Minimum = 2 chromosomes

GTTACGCCAATACAG**G**ATCCAGGAGATTACC GTTACGCCAATACAG**C**ATCCAGGAGATTACC

Figure Credit: Modified from Glenn Howe, Oregon State University

SNP detection in the pine AGP6 gene

Direct detection of haplotypes using haploid pine tissues

AGP6 gene

Pine seed with haploid megagametophyte

Figure Credits: Modified from White et al 2007.

When no prior knowledge of sequence is available to guide SNP discovery, new sequence may be obtained.

Some things to think about

- What DNA source to use?
- What population will be represented by the sequence?
- What method should be used for acquiring sequence?

SNP discovery	BAC = bacterial artificial chromosome Fosmid = Bacterial F - plasmid RRG = reduced representation genomic			
Which DNA sequence?	Shotgun = many small DNA sequences cDNA = complementary DNA made from mRNA			

Figure Credit: David Harry, Oregon State University

Sanger sequencing

- DNA is fragmented
- Cloned to a plasmid vector
- Cyclic sequencing reaction
- Separation by electrophoresis
- Readout with fluorescent tags

Figure Credit: Jill Wegrzyn, University of California, Davis

Next Generation Sequencing Technologies: Current!

	Roche (454)	Illumina (Solexa)	SOLiD
Chemistry	Pyrosequencing	Polymerase-based (CRT)	Ligation-based
Amplification	Emulsion PCR	Bridge Amp	Emulsion PCR
Paired ends/sep	Yes/3kb	Yes/200 bp	Yes/3 kb
Mb/run	600 Mb	1300 Mb	2000 Mb
Time/run	7 h	4 days	5 days
Read length	300-800 bp	32-150 bp	50 bp
Cost per run (total)	\$8439	\$8950	\$17447
Cost per Mb	\$84.39	\$5.97	\$5.81

Released recently: Illumina HiSeq 1000: will deliver 100+ Gb of data/run using paired 100 bp reads, enabling the sequencing of a complete human genome in a single run

Cost of sequencing a base dropping faster than storing a byte of data

Figure Credit: Modified from Baker, 2010

CTGN

A SNP discovery example – Chinese chestnut

- In 2008 a series of cDNA libraries based on RNA collected from different tissues of three plant sources were submitted to sequencing on the 454 FLX platform.
- Cost: ~\$20K Time: ~2-3 weeks for acquisition, 4 weeks for data processing

Yield: 838,472 Reads

171.9 Million bp of sequence

40,039 contigs

2 to 20+ copies of a given sequence

Detected: > 15,000 potential SNPS, from expressed genes

Sequence processing

Like taking a sip of water from a fire hydrant

- Sequence is now abundant and inexpensive (relatively)
- Making sense of sequence requires time, computer resources, skilled personnel, and a collection of bioinformatic tools
- Chief Concerns
 - How reliable is the quality of your sequence?
 - Can you assemble and align sequences representing alleles?
 - Can you reliably identify polymorphisms as candidate SNPs?

Sequence assembly

- The sequence assembly problem is essentially one of constructing a DNA sequence superstring that explains the observed set of sequence reads.
- This superstring might be...any type of DNA that was subject to sequencing
- If the data were completely error-free, then we would expect every sequence read to be contained within the superstring

Sequence analysis software

Traditional DNA sequence analysis programs for 1st generation sequencing technology

- Phred Calls bases and assigns quality scores
- **Phrap** Forms contigs (unigenes) and assigns new quality scores
- Consed Allows users to view and edit alignments (contigs), and view trace files (Visual X-Windows graphic interface)
- **Polyphred** Finds SNPs in phrap contigs
- Polybayes Calculates probability that putative SNPs are true SNPs and not sequencing errors

Sequence analysis for NGS (next generation sequencing)

- NGS use a variety of strategies that rely on a combination of:
 - template preparation
 - sequencing/imaging
 - genome alignment (if available)
 - assembly methods
- The short sequence read lengths (32 150 bp) for many of the NGS present challenges for alignment, assembly, and SNP detection. All functions are improved by having a reference sequence.
- (Assembly): One review site lists 27 programs, most developed over the last 3 years (See http://en.wikipedia.org/wiki/Sequence_assembly)
- (SNP Detection): Equally abundant (currently favored for Illumina sequence –GATK and GigaBayes)

Sequence analysis for NGS (next generation sequencing)

- Short reads are problematic, because short sequences do not map uniquely to the genome/transcriptome
- Solution #1: Get longer reads
 i.e. Pair with longer read technologies such as 454
- Solution #2: Get paired reads (sequenced from both ends)

Shendure and Ji, 2008

SNP validation and genotyping

- Validation: Do SNPs segregate in a Mendelian fashion
 - Re-sequence array of progeny (haploid seed tissue
- Selecting a genotyping platform
 - Factors to consider
 - Cost per genotype
 - Number of individuals to genotype
 - Number of SNPs
- Selecting population
 - Preliminary survey
 - Full-fledged study

In summary

- Markers have played a pivotal role in the development of genetics
- Marker development has proliferated in recent decades, driven by technology improvements
- Relative abundance of markers has brought about increased utility
- High-throughput sequencing has delivered SNPs, a class of abundant and fundamental genetic markers
- Bioinformatic tools and genotyping vendors play key roles
- SNP markers make rigorous association genetic and genomic selection applications feasible

References cited

- Baker, M. 2010. Next-generation sequencing: adjusting to data overload. Nature Methods 7: 495–499. (Available online at: http://dx.doi.org/10.1038/nmeth0710-495) (verified 31 May 2011).
- Pierce, B. A. 2010. Genetics Essentials: Concepts and Connections 1st Edition. W. Freeman and Co., New York.
- Shendure, J., and H. Ji. 2008. Next-generation DNA sequencing. Nature Biotechnology 26: 1135-1145. (Available online at: http://dx.doi.org/10.1038/nbt1486) (verified 23 March 2011).
- White, T. L, W. T. Adams, and D. B. Neale. 2007. Forest genetics. CAB International, Wallingford, United Kingdom. (Available online at: http://bookshop.cabi.org/?page=2633&pid=2043&site=191) (verified 27 Apr 2011).

External Links

 National Center for Biotechnology Information [Online]. U.S. National Library for Medicine, National Institutes of Health. Available at: http://www.ncbi.nlm.nih.gov (verified 23 March 2011).

Additional Resources

Dendrome Neale, D., J. Wegrzyn, B. Figueroa, and J. Yu. Tree genes: A forest tree genome database [Online]. University of California at Davis. Available at: http://dendrome.ucdavis.edu/treegenes (verified 31 May, 2011).

- Treenomix Treenomix [Online]. University of British Columbia. Available at: http://www.treenomix.ca (verified 31 May, 2011).
- Chestnut Fagaceae genomics web: Genomic tools for chestnut, oak, beech, and other trees [Online]. Available at: http://fagaceae.org (verified 31 May, 2011).

Thank You.

Conifer Translational Genomics Network Coordinated Agricultural Project

UCDAVIS

United States Department of Agriculture

National Institute of Food and Agriculture

