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Marker applications

Quality control

Introgression and hybrid breeding

Parentage analysis
— Pollen contamination

Enhanced breeding designs
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Quality control in a clonal seed orchard
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Figure Credit: Nicholas Wheeler, Oregon State University
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Opportunity cost of orchard errors

Assume

= Progeny of wrong orchard clone have 5% less genetic gain
(volume) than progeny of desired clone

= 1% gain = $10 present value/acre planted ($60 future value at
rotation)

= Annual planting requirement = 10,000 acres, of which 10% is
planted with the desired clone (1000 acres)

= 40% of trees in desired clone are mislabeled; thus, 400 acres per
year are planted with trees that are performing 5% below expected

= 400 acres * 5% * $10/acre/percent = $20,000 present value ($120K
future value). If unchecked for 15 years, = $300K present value
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Marker assisted backcrossing or
Introgression

= This is easily the single greatest application of markers to animal
and plant breeding in the world

= Used predominantly for simply inherited traits such as disease or
Insect resistance

= Commonly used to introduce an important allele from an

unimproved individual / species into a highly selected individual /
line / variety
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Backcross breeding approaches

= Marker-assisted “foreground” selection

— Select for markers that identify favorable alleles from the donor
population
— Markers must be in very tight linkage with desired trait

= Marker-assisted “background” selection
— Select for marker alleles that identify the host (recurrent) parent genome
— Must have many alleles with complete genome coverage

= Typically, both approaches are used together
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Figure Credit: Modified from Welz and Geiger, 2000
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Distribution of genotypes in simulated BC, population: recovery of RP genome
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Figure Credit: Modified from Welz and Geiger, 2000
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American chestnut

= Early in the 20th century, the
Appalachian Mountains were
full of giant chestnut trees

= Chestnuts were abundant,
accounting for 25% of all
Appalachian hardwoods

= Tree diameters of 8 to 10 feet
were often reported. One Iin
Francis Cove, North Carolina,
was 17 feet in diameter

= Chestnut grew tall (up to 120
feet) and straight -- often clear
of branches up to 50 feet,
making them ideal lumber

Image Credit: John Carlson, The Pennsylvania State University and The American Chustnut Foundation.
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American chestnut

Image Credits: John Carlson, The Pennsylvania State University and The American Chestnut Foundation
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American chestnut

= Chestnut was an important commodity
for the early European settlers of the
Appalachians

= Uses included
— Nuts for food, mast, and cash
— Tanning hides
— Building materials
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The chestnut blight

= By the 1950s, chestnut was virtually eliminated as a dominant forest
tree

Image Credits: John Carlson, The Pennsylvania State University and The American Chestnut Foundation
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QTL studies reveal three sources of major

resistance
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Marker applications in chestnut restoration

= Quality control in breed
orchards

= Genetic mapping
= QTL mapping
= Marker informed introgression

= |Locating resistance genes
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Propagation population characterization

= Varietal protection (quality control)

= Parentage analysis / orchard efficiency
— Pollen contamination
— Parental contribution to the gene pool
— Pollen competition
— Supplemental mass pollination success
— Mating systems
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Pollen contamination
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Contamination from Contamination
outside orchard between orchards
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Figure Credit: Nicholas Wheeler, Oregon State University

Contamination from
outside orchard
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Pollen contamination in DF orchards

Year Type of seed # of seeds Observed seed Pollen contamination
collection analyzed contamination (%) (%) + SE

1999 Bulk 192 (190V) 1.0 31.0%:3.5

2000 Bulk 192 (102) 46.9 368+ 52

2000 Individual-ramet 240 0 3204 3.2

2003 Individual-ramet 336 0 41328

Mean 353x24

Slavov et al., 2005; Figure Credit: Glenn Howe, Oregon State
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PC Is higher in parents that flower early
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Differential paternal success
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Figure Credit: Glenn Howe, Oregon State University
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Parentage reconstruction

Table 5. Parent free identification using SSR genefic markers. The SSR genotypes of iwo putative open-pollinated (OP) field selections were
compared fo the genotypes of known progeny growing in genetic test plantafions (n = 8-10). If the putative parents in the field are correct,
then all of their progeny must have at least one of the two parental alleles. Cases in which a progeny allele matches one of the alleles in
the putative parent are shown in white. Allele numbers (e.g., 209 or 216) represent relative lengths of dlfernative SSR alleles.

Putative OP parent
(i.e., tree in the field) Progeny number (in progeny test plantation)
Inferred Conclusion:
SSR genotype  Progeny genotype of real  putative
ID (marker name)  allele 1 2 3 4 5 6 7 8 9 10  OPparent parent is:
1 Shorter = 205 202 Correct
(OSU_3F1)  longer = 219 227 223 211 218
1 Shorter = 172 188 176 172 186 Correct
(OSU_389)  Longer =
1 Shorfer = 228 226 226 226 Correct
(OSU_4A7)  longer = 284 284
2 Shorfer = 210 210 192 210 210 214 190 214 Incorrect
(OSU_3F1)  longer= 224 214 210 214 226 214 210 220
2 Shorter = 188 188 Incorrect
(OSU_3B9)  longer= 208 194 210 196 200 188
2 Shorter = 268 228 282 Incorrect
(OSU_4A7)  longer = 228 244 248 284 284 284 284

Figure Credit: Glenn Howe, Oregon State University
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Number of loci needed for paternity in DF
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Enhanced breeding designs: Informed
choices for full-sib matings

= Complementary breeding

— ldentify individuals that differ (genotypes) from one another at a key
locus (i.e. R genes for disease resistance)

— Mate to distribute R genes into other backgrounds

= Pyramiding genes
— An extension of complementary breeding where you attempt to
accumulate desirable alleles at two or more loci into one progeny cohort
(see example later)

= Diversity index breeding

WWW.pinegenome.org/ctgn
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Enhanced breeding designs: Using markers
for paternity analysis

Polymix breeding with paternity analysis (PMX/WPA)*

= Replace multiple breeding designs (PMX for BV estimation + Full-
sib design for advanced generation selection) with just a single
PMX test

= Fingerprint the top individuals in the PMX test to determine paternity
(maintains pedigree control and manages inbreeding)

= Saves time and cost of full-sib breeding while actually increasing
gain potential

* Lambeth, et al., 2001
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Tree improvement flow diagram
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Figure Credit: Clem Lambeth
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Retrospective selection strategy of elite parents based on paternity testing of progeny
individuals displaying superior performance using microsatellite markers.
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Seed orchard Seed harvest with maternal control

A

Retrospective selection of A Paternity testing of

Commercial plantation by
half-sib family blocks or
half-sib progeny trial

parents with high specific selected trees using

combining ability (SCA) to be microsatellite markers to

used in controlled crosses identify precisely their \

and/or to cull from seed
orchard parents of low SCA. pollen parents. Identification of top trees
a for specific phenotype

traits of interest

Figure Credit: Modified from Grattapaglia, 2007
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Implementation strategies for marker
Informed breeding In tree improvement

= “All forms of MAS can be applied separately or in conjunction with
classical methods of selection (mass, family, within-family,
combined and index selection) and can be utilized to make
selections for selected, breeding and/or production populations”
— In White, Adams and Neale, Forest Genetics, Chapter 19, Page 554

WWW.pinegenome.org/ctgn
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Approaches to MAS: (Classified by mapping

precision)

Classification of three different types of marker-trait associations relevant to Eucalyptus MAS

(see text for details)

QTL

—,
-— —

QTL or candidate gene

—

—_——

Gene and exact polymorphism (QTN) identified

—— el

Ex.

Resolution
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LE MAS

LE markers - Linkage equilibrium

Ex. microsatellite markers flanking a QTL mapped in a high
LD pedigree - Centimorgan resolution, ~ 10%a 107 bp

LD MAS

LD markers — Linkage disequilibrium

SNPs strongly associated with the QTL or candidate
gene - Subcentimorgan resolution ~ 102 a 104 bp

Gene MAS

Direct markers
Ex. causal SNPs (QTNs) of quantitative variation
Maximum resolutionand identification of exact allele

Figure Credit: Modified from Grattapaglia, 2007
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Association ainline Production
Population 0 Population
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