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Marker applications 

 Quality control 

 Introgression and hybrid breeding 

 Parentage analysis 

– Pollen contamination 

 Enhanced breeding designs 
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Quality control in a clonal seed orchard 

Figure Credit: Nicholas Wheeler, Oregon State University 
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Opportunity cost of orchard errors 

Assume 

 Progeny of wrong orchard clone have 5% less genetic gain 

(volume) than progeny of desired clone 

 1% gain = $10 present value/acre planted ($60 future value at 

rotation) 

 Annual planting requirement = 10,000 acres, of which 10% is 

planted with the desired clone (1000 acres) 

 40% of trees in desired clone are mislabeled; thus, 400 acres per 

year are planted with trees that are performing 5% below expected 

 400 acres * 5% * $10/acre/percent = $20,000 present value ($120K 

future value). If unchecked for 15 years, = $300K present value 
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Marker assisted backcrossing or 

introgression 

 This is easily the single greatest application of markers to animal 

and plant breeding in the world 

 Used predominantly for simply inherited traits such as disease or 

insect resistance 

 Commonly used to introduce an important allele from an 

unimproved individual / species into a highly selected individual / 

line / variety  
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Backcross breeding approaches 

 Marker-assisted “foreground” selection 

– Select for markers that identify favorable alleles from the donor 

population 

– Markers must be in very tight linkage with desired trait 

 Marker-assisted “background” selection 

– Select for marker alleles that identify the host (recurrent) parent genome 

– Must have many alleles with complete genome coverage 

 Typically, both approaches are used together 
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Figure Credit: Modified from Welz and Geiger, 2000 
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Figure Credit: Modified from Welz and Geiger, 2000 
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American chestnut 

 Early in the 20th century, the 
Appalachian Mountains were 
full of giant chestnut trees 

 Chestnuts were abundant, 
accounting for 25% of all 
Appalachian hardwoods 

 Tree diameters of 8 to 10 feet 
were often reported. One in 
Francis Cove, North Carolina, 
was 17 feet in diameter 

 Chestnut grew tall (up to 120 
feet) and straight -- often clear 
of branches up to 50 feet, 
making them ideal  lumber 

Image Credit: John Carlson, The Pennsylvania State University and The American Chustnut Foundation. 
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American chestnut 

Image Credits: John Carlson, The Pennsylvania State University and The American Chestnut Foundation 
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American chestnut 

 Chestnut was an important commodity 

for the early European settlers of the 

Appalachians 

 Uses included 

– Nuts for food, mast, and cash 

– Tanning hides 

– Building materials 

Image Credits: John Carlson, The Pennsylvania State University and The American Chestnut Foundation 
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The chestnut blight 

 By the 1950s, chestnut was virtually eliminated as a dominant forest 

tree 

Image Credits: John Carlson, The Pennsylvania State University and The American Chestnut Foundation 
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QTL studies reveal three sources of major 

resistance 

Figure Credit: Modified from Kubisiak et al., 1997 
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Marker applications in chestnut restoration 

 Quality control in breed 

orchards 

 Genetic mapping 

 QTL mapping 

 Marker informed introgression 

 Locating resistance genes 

Image Credits: Brad Smith and Fred Heberd, The American Chestnut Foundation 
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Propagation population characterization 

 Varietal protection (quality control) 

 Parentage analysis / orchard efficiency 

– Pollen contamination 

– Parental contribution to the gene pool 

– Pollen competition 

– Supplemental mass pollination success 

– Mating systems 
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Pollen contamination 

Figure Credit: Nicholas Wheeler, Oregon State University 
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Slavov et al., 2005; Figure Credit: Glenn Howe, Oregon State 

University 

Pollen contamination in DF orchards 
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PC is higher in parents that flower early 

Figure Credit: Glenn Howe, Oregon State University 
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Differential paternal success 

Clone 
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Figure Credit: Glenn Howe, Oregon State University 
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Parentage reconstruction 

Figure Credit: Glenn Howe, Oregon State University 
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Number of loci needed for paternity in DF 

Diploid sampling

(e.g., other species)

Haploid sampling

(e.g., Pinaceae)

Figure Credit: Glenn Howe, Oregon State University 
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Enhanced breeding designs: Informed 

choices for full-sib matings 

 Complementary breeding 

– Identify individuals that differ (genotypes) from one another at a key 

locus (i.e. R genes for disease resistance) 

– Mate to distribute R genes into other backgrounds 

 Pyramiding genes 

– An extension of complementary breeding where you attempt to 

accumulate desirable alleles at two or more loci into one progeny cohort 

(see example later) 

 Diversity index breeding 
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Enhanced breeding designs: Using markers 

for paternity analysis 

Polymix breeding with paternity analysis (PMX/WPA)*  

 Replace multiple breeding designs (PMX for BV estimation + Full-

sib design for advanced generation selection) with just a single 

PMX test 

 Fingerprint the top individuals in the PMX test to determine paternity 

(maintains pedigree control and manages inbreeding) 

 Saves time and cost of full-sib breeding while actually increasing 

gain potential 

* Lambeth, et al., 2001 
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Tree improvement flow diagram 
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Figure Credit: Clem Lambeth  
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M A L E P A R E N T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

F 1 X X X X X

E 2 X X X X

M 3 X X X

A 4 X X

L 5 X

E 6

7 X X X X X

P 8 X X X X

A 9 X X X

R 10 X X

E 11 DISC. HALF-DIALLELS X

N 12 75 crosses

T 13 5 crosses per parent X X X X X

14 7 of top 28 crosses made X X X X

15 X X X

16 X X

17 X

18

19 PARENTAL B.V. ESTIMATION _ O.K. X X X X X

20 SELECTION FOR FUTURE _ GOOD TO WEAK X X X X

21 PEDIGREE (INBR.) CONTROL _ GOOD X X X

22 BREEDING & TESTING _ MOD. DIFF. X X

23 X

24

25 X X X X X

26 X X X X

27 X X X

28 X X

29 X

30

Figure Credit: Clem Lambeth  
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M A L E P A R E N T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 PMX

F 1 3 4 9 2 4 5 6 3 3 7 2 4 4 4 5 4 0 8 1 6 6 4 3 4 3 3 5 5 1 2 X

E 2 2 7 1 5 3 3 5 7 5 3 3 3 3 5 3 6 4 3 5 5 5 2 4 5 4 5 4 4 5 1 X

M 3 0 2 7 3 5 3 3 6 5 2 3 2 1 6 4 3 2 5 7 2 6 6 8 5 2 3 8 6 2 3 X

A 4 0 4 7 2 3 8 2 3 9 5 6 3 6 7 3 3 4 4 4 1 3 3 3 8 1 6 5 3 2 2 X

L 5 1 3 2 8 4 10 5 5 3 1 2 6 3 2 3 3 4 7 5 3 5 6 5 2 4 4 3 5 3 3 X

E 6 1 4 4 3 3 3 4 4 5 3 2 1 4 5 2 8 2 7 3 5 3 10 5 7 5 6 5 4 2 0 X

7 2 4 4 3 4 2 6 3 8 2 1 4 1 7 3 2 3 4 2 6 3 4 7 7 6 4 5 6 4 3 X

P 8 2 4 4 2 4 5 1 7 2 6 2 6 4 9 5 7 4 7 2 5 3 6 2 2 3 2 3 4 5 2 X

A 9 4 6 3 5 4 7 3 3 3 3 8 3 2 3 3 4 5 6 3 5 3 2 3 3 4 5 5 3 8 1 X

R 10 2 7 5 1 9 3 4 5 4 3 2 2 4 2 3 5 7 4 4 3 2 4 8 4 5 2 3 3 8 2 X

E 11 2 4 5 1 3 3 4 8 4 5 6 4 3 5 4 4 4 3 4 6 1 3 4 5 5 4 7 3 4 2 X

N 12 2 2 3 5 3 4 9 2 1 4 2 6 6 6 6 5 5 6 3 3 2 7 5 4 2 6 4 2 4 1 X

T 13 4 1 6 7 2 3 5 6 1 4 1 2 5 1 6 4 6 2 9 4 2 3 5 8 1 3 9 5 3 2 X

14 2 4 7 4 0 7 3 2 4 4 3 2 5 4 5 2 4 2 5 4 5 3 5 2 5 2 4 7 10 4 X

15 0 5 3 3 6 6 3 3 6 7 5 3 4 2 2 2 1 3 4 3 5 12 8 3 3 5 7 2 3 1 X

16 0 5 5 5 7 2 5 4 5 4 4 3 4 4 4 1 7 7 3 2 3 6 2 4 3 4 6 4 3 4 X

17 2 6 3 5 5 2 5 4 6 0 2 3 9 8 3 7 3 1 3 4 5 1 2 7 4 5 4 3 7 1 X

18 1 5 4 3 3 2 5 6 5 6 4 1 7 2 5 5 6 3 4 2 5 1 4 4 6 1 5 8 5 2 X

19 2 6 7 4 5 1 4 1 8 2 2 0 4 1 3 2 2 6 10 2 6 6 4 2 8 5 4 1 10 2 X

20 2 8 5 4 2 6 4 2 3 1 2 3 2 5 2 9 5 5 5 4 11 4 1 6 5 4 2 4 3 1 X

21 1 8 3 3 4 1 4 6 1 7 4 5 6 2 6 2 6 2 6 6 4 7 4 4 6 3 4 4 0 1 X

22 4 1 6 4 1 5 5 0 5 2 5 8 5 5 2 1 2 1 5 10 5 5 3 2 6 6 3 5 4 4 X

23 1 3 1 2 2 3 6 3 6 5 4 4 5 2 7 5 4 3 7 2 7 1 3 7 9 5 4 5 3 1 X

24 1 5 2 4 5 3 5 3 4 7 3 5 1 7 5 4 4 5 5 3 5 5 3 3 3 7 5 4 3 1 X

25 5 4 2 3 4 3 7 2 5 5 3 4 7 4 2 1 5 4 1 4 4 5 4 3 5 8 5 5 2 4 X

26 3 2 2 7 10 6 1 1 3 3 7 4 2 4 2 4 2 4 2 5 5 6 5 7 4 4 2 6 5 2 X

27 3 2 2 3 10 0 7 3 3 6 9 4 3 3 7 4 2 1 7 2 4 3 3 5 4 2 3 4 9 2 X

28 2 5 6 3 5 4 4 1 6 2 2 4 2 3 4 4 7 5 3 3 7 3 1 5 8 5 6 5 3 2 X

29 1 2 4 8 2 4 1 7 5 4 4 4 6 5 1 3 8 5 6 4 7 2 3 3 4 6 5 4 1 1 X

30 2 3 5 4 2 1 2 2 4 2 2 2 7 8 6 4 5 4 3 2 8 4 3 3 4 5 2 7 9 5 X

All 435 crosses PARENTAL B.V. ESTIMATION _ EXCELLENT
30 crosses per parent SELECTION FOR FUTURE _ EXCELLENT
All 28 best crosses PEDIGREE (INBR.) CONTROL _ EXCELLENT

BREEDING & TESTING _ SIMPLE
PATERNAL ANALYSIS _ DIFFICULT

Figure Credit: Clem Lambeth  
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Figure Credit: Modified from Grattapaglia, 2007 
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Implementation strategies for marker 

informed breeding in tree improvement 

 “All forms of MAS can be applied separately or in conjunction with 

classical methods of selection (mass, family, within-family, 

combined and index selection) and can be utilized to make 

selections for selected, breeding and/or production populations” 

– In White, Adams and Neale, Forest Genetics, Chapter 19, Page 554 
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Approaches to MAS: (Classified by mapping 

precision) 

Figure Credit: Modified from Grattapaglia, 2007 
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