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Moving from family-based to population-

based QTL discovery 

 Linkage and QTL mapping using pedigreed families 
– QTL, when located, are on large chromosomal blocks  

– With only a few generations, the amount of recombination is limited 

 Association genetics: Identifying QTL using populations comprising 
unrelated individuals or mixed relationships 
– QTL are located on small chromosomal blocks. These locations are 

mapped with great precision relative to closely linked markers 

– Linkage blocks are shaped by historical recombination 

– Population histories reflect 10’s – 1000’s of generations 
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Chromosome blocks in families and 

populations 

 Family-based linkage mapping 

(a) involves tracking a QTL, 

here denoted as ―m‖, over a 

few generations in larger 

chromosomal blocks 

 Population-based association 

mapping (b) tracks ―m‖ on 

smaller chromosomal 

segments, taking advantage of 

historical recombination 

Figure Credit: Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Genetics, Cardon and Bell, 2001. 
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It is a question of resolution 

Figure Credit: Modified from Grattapaglia. 2007 
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From families to populations: Linkage to 

linkage disequilibrium 
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Figure Credit: Modified from Rafalski, 2002 
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Comparing approaches 

Criteria Family-based QTL Mapping Population-based Association Mapping

Number of markers Relatively few (50 – 100’s) Many (100’s – 1000’s)

Populations Few parents or grandparents with many 
offspring (>500)

Many individuals with unknown or mixed 
relationships.  If pedigreed, family sizes are 
typically small (10’s) relative to sampled 
population (>500)

QTL analysis Easy or complex.  Sophisticated tools 
minimize ghost QTL and increase mapping 
precision

Easy or complex.  Sophisticated tools reduce 
risk of false positives

Detection depends on QTL segregation in offspring, and marker-trait 
linkage within-family(s)

QTL segregation in population, and marker-
trait LD in mapping population

Mapping precision Poor (0.1 to 15 cM).  QTL regions may contain 
many positional candidate genes.

Can be excellent (10’s to 1000’s kb).  Depends 
on population LD.

Variation detected Subset (only the portion segregating in 
sampled pedigrees)

Larger subset.  Theoretically all variation 
segregating in targeted regions of genome.

Extrapolation to other 
families or populations

Poor.  (Other families not segregating QTL, 
changes in marker phase, etc)

Good to excellent.  (Although not all QTL will 
segregate in all population/ pedigree 
subsamples) 
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Linkage disequilibrium (LD): The foundation 

of association genetics 

 LD measures non-random associations among alleles at different 

loci (or non-random associations among SNPs) 

 LD is the basis for associating markers with traits. It is the ―glue‖ 

that binds them 

 LD also provides insights into population history, which helps in 

selecting experimental populations for marker-trait associations 

 Estimating LD and understanding how it is organized in populations 

is crucial for deciding how to sample marker genotypes 

 Knowing how population history can affect LD is essential for 

avoiding pitfalls and spurious false-positives 
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A conceptual view of LD 

Figure Credit: Reprinted from Current Opinion in Plant Biology, 5, Rafalski, Applications of single nucleotide polymorphisms in crop genetics, 94-100, copyright 2002, with 

permission from Elsevier. 
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Calculating LD (for biallelic loci) 

 Pair-wise single-locus allele frequencies predict frequencies for each of four 

gamete types (left)  

 D = 0 (center) implies that predicted = observed gamete frequencies 

 D measures the degree to which observed and predicted gamete 

frequencies differ (right) 

Figure Credit: David Harry, Oregon State University 
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LD can be positive (+) or negative (-) 

D = PAB – pA pB

D = PAB Pab – PAb PaB

D = 0.40 – 0.5*0.5 = 0.15

D = 0.4*0.4 – 0.1*0.1 = 0.15

D = PAB – pA pB

D = PAB Pab – PAb PaB

D = 0.10 – 0.5*0.5 = -0.15

D = 0.1*0.1 – 0.4*0.4 = -0.15

Figure Credit: David Harry, Oregon State University 
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Standardized measures for LD 

 Our definition of LD means that its magnitude depends on allele 

frequencies 

 D values of 0.01 in one population may be small, and yet in another, 

may be large — depending on allele frequencies 

 From our previous example 

– D =  

– D = 0.40 – 0.5*0.5 = 0.15 

 How large is D = 0.15? 

 Consequently, two standardized measures of LD were created 

–   

PAB – pA pB 

D' and r2 
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Standardized measures for LD: D’ 

 

 

 

 

 Read ―D prime‖, D' ranges from 0 to 1 

 D' is maximized (D' = 1) whenever a gamete type is missing, as 
would happen for a recent mutation 

 However, D' is unstable when alleles are rare, as often happens for 
recent mutations 

 D' can be made more reliable by establishing a minimum threshold 
frequency for minor alleles, e.g. MAF ≥ 0.05; or MAF ≥ 0.10 
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Standardized measures for LD: r2 

 

 
 

 D is the covariance between alleles at different loci 

 Can consider r2 to be the square of the correlation coefficient 

 Note that r2 can only attain a value of 1 when allele frequencies at 
the two loci are the same 

 Like a correlation coefficient, r2 can be used to assess to what 
extent variation in one marker explains variation in a second 

 Both measures are often used, as D´ and r2 are sensitive to 
different factors (e.g., recombination, haplotype history, allele 
frequencies) 

 Devlin and Risch, 1995 
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LD in populations: Determining phase 

 LD metrics such as r2 or D' are based on counts or frequencies of 

gametes or haplotypes (e.g., PAB vs. PAb) 

 Diploid genotypes create challenges: When individuals are 

heterozygous for two loci, how do we know which alleles are 

associated?   

 In the following example, phase is unknown 

Figure Credit: Glenn Howe, Oregon State University 
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Approaches for determining phase 

 Phase can be observed directly in haploids (best approach) 

– Single sperm 

– Conifer megagametophytes 

 Determine sequence (hence phase) using cloned DNA 

– Cloned fragments are copies of individual chromosomes 

– Larger clones yield more extensive information on phase 

 Statistically infer phase from population data 

– Determine haplotype frequencies from unambiguous genotypes, e.g., 

AB/AB; AB/Ab; Ab/Ab; aB/aB; etc 

– Use these estimates to infer haplotypes for ambiguous genotypes 

(AB/ab and Ab/aB)  

 Computer programs exist to make these calculations 

http://www.pinegenome.org/ctgn


www.pinegenome.org/ctgn 

Statistical tests for LD 

 As with many such measures, statistical significance depends on 
sample sizes, allele frequencies, and strength of association. How 
can we assess the significance of LD? 

 LD between two loci with two alleles/locus 
– D            Fisher’s exact test or 

– D'          Likelihood ratio test   

– r2           2  

 LD can also be calculated for loci with more than two alleles, for 
unknown linkage phase of double heterozygotes, and for samples 
of rare alleles, but that goes well beyond what we need to know 
here 
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Biology of linkage disequilibrium 

 What does LD mean 

biologically? 

 What promotes LD 

– Linkage  

– Population admixture 

– Selection / epistasis   

 What affects LD 

– How is LD maintained? 

– How does LD change? 

Figure Credit: Modified from Cardon and Bell, 2001 
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LD and random mating 

 HWE and LD (or LE) both pertain to random (or non-random) 

associations of alleles and genotypes 

– HWE describes associations of alleles at the same locus 

– LD (or LE) measures associations of alleles at different loci 

 HW proportions are restored by one generation of random mating 

 However, once established, LD persists for some time, even in 

random mating populations 

 How quickly LD dissipates depends on several factors 
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Factors affecting the decay of LD 

 Recombination rate — describes how often linked loci tend to 
recombine 
– Closely linked loci rarely recombine 

 Selfing — decreases the frequency of double heterozygotes, which 
decreases the opportunity for creation of new recombinants 

 Small populations or population bottlenecks — mechanism is 
analogous to the reduction of heterozygosity in small populations, 
so double heterozygotes are also less common 

 Selection — can increase the frequency of certain haplotypes, 
counteracting LD decay from recombination  
– Selection favoring one or a few haplotypes (positive selection) 

– Selection favoring heterozygotes (or genotypic combinations in different 
environments, balancing selection) 
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Rate of LD decay driven by recombination (r) 

D is expressed in standardized units as D' or r2

r = 0.05

r = 0.5

r = 0.005

r = 0.0005

Dt+1 = (1-r) Dt

r = 0.5 for unlinked loci, so 

LD decays by half each 

generation

Figure Credit: Modified from Mackay and Powell, 2007. 
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Effect of mating system on LD decay 

Figure Credit: Jennifer Kling, Oregon State University 
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Average decay for LD in Pinus taeda  

 Conifers are primarily 

outcrossing and have large Ne 

 Therefore, LD decays rapidly 

 Figure shows average decay 

of LD over 19 candidate 

genes in loblolly pine (Pinus 

taeda) 

 LD decays to ~r2 = 0.2 within 

~1500 bp 

Figure Credit: Reprinted from Trends in Plant Science Vol. 9, Neale, D. B., and O. Savolainen, Association genetics of complex traits 
 in conifers, Pages: 325-330, 2004, with permission from Elsevier.  
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Decay of LD in Eucalyptus  

 Rapid decay of intragenic 

linkage disequilibrium in the 

cinnamyl-

alcoholdehydrogenase (cad) 

gene in two Eucalyptus 

species 

Figure Credit: Grattapaglia and Kirst, 2008. Used with permission of Wiley and Sons 
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Extent of LD in various plants 

Figure Credit: With kind permission from Springer Science+Business Media: Plant Molecular Biology, Linkage disequilibrium and 

association studies in higher plants: Present status and future prospects, 57, 2005, page 475, Gupta, P. K., R. Rustgi, and P. L. 

Kulwal, Table 2. 
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Tools for visualizing LD: Haploview 

Figure Credit: Christensen and Murray, 2007. Reprinted with permission of the Massachusetts Medical Society. 

http://www.pinegenome.org/ctgn


www.pinegenome.org/ctgn 

Recombination and demography shape 

haploblock structure 

Figure Credit: Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Genetics, Stumpf and McVean, 2003. 
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Recombination ―hotspots‖ delineate 

haplotype boundaries in human populations 

Figure Credit: Modified from HapMap Consortium, 2005. 
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LD within and 

among 

nearby genes 

in P. taeda 
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Patterns of 

intra and 

interlocus LD 

for coastal  

Douglas-fir 

Figures used with permission of the Genetics Society 

of America from ―Multilocus patterns of nucleotide 

diversity and divergence reveal positive selection at 

candidate genes related to cold hardiness in coastal 

Douglas-fir (Pseudotsuga menziesii var. menziesii)‖, 

Eckert et al. Genetics 183:289-298. 2009; permission 

conveyed through Copyright Clearance Center, Inc. 
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Haplotype genealogy and LD 

 Colored circles are polymorphic 

sites (e.g. SNPs) located along 

haplotypes with evolutionary 

histories shown on the left 

 LD reflects mutational events 

bound by history 

 Areas of LD (circled) don't tell 

us about the presence or nature 

of selection 

 LD is reduced by recombination 

 Amount of reduction depends 

when recombination occurs 

relative to haplotype history 

Gene Genealogies Haplotypes

Figure Credit: Modified from Bamshad and Wooding, 2003 
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