

How to Investigate Breeding Priorities Using Socioeconomic Methods

Karina Gallardo and Huixin Li Washington State University

Shawn Yarnes, Host http://www.extension.org/plant_breeding_genomics

Slides available at http://www.extension.org/pages/67549 Sign up for PBG news at http://pbgworks.org

Rosisted breeding in Rosaceae

How to Investigate Breeding Priorities Using Socioeconomic Methods

R. Karina Gallardo, Assistant Professor Huixin Li, PhD Student Washington State University

Socio Economic Team Members

Karina Gallardo

Chengyan Yue

Vicki McCracken

Jim Luby

Jim McFerson

Current SE Team Grad Students

Huixin Li

Lilian Carrillo

Alicia Rihn

Jong Choi

Shuoli Zhao

Outline of Presentation

RosBREED & Socio-economics

- Breeders' survey
- Data analysis
- Conclusions & implications

RosBREED & Socio-Economics by R. Karina Gallardo

RosBREED Mission Statement

To develop and apply marker-assisted breeding, based on improved knowledge of industry value and consumer preferences, to accelerate and increase the efficiency of rosaceous cultivar release and successful cultivar adoption

Amy Iezzoni, MSU 📱 Cameron Peace, WSU

4 yrs **\$7.2M federal** \$7.2M matching

Enabling marker-assisted breeding in Rosaceae

United States Department of Agriculture National Institute of Food and Agriculture

This project is supported by the Specialty Crop Research Initiative of USDA's National Institute of Food and Agriculture

RosBREED Will Bridge the Chasm

Genomics Resources

Genomics Research

Genomics knowledge Markerassisted breeding reeding

Programs

More efficient 4

cultivars

Authors: Amy lezzoni and Cameron Peace

Socio-Economics Team Goal

Help accelerate and increase efficiency of cultivar development and adoption by identifying valuable breeding trait targets.

- Objectively identify important breeding trait targets.
- Prioritize the most valuable target traits for marker-assisted breeding development.

Enabling marker-assisted breeding in Rosaceae

Authors: Amy lezzoni and Cameron Peace

Objective of this Webinar

This webinar will explore the application of survey data to determine how breeding targets are prioritized within Rosaceous breeding programs.

KOSBKEED Enabling marker-assisted breeding in Rosaceae

Breeders' Survey by R. Karina Gallardo

Breeders' Survey

- No previous studies on this specific issue.
 - Related studies Frey 1996, Fuglie and Walker 2001, Fuji et al. 2007.
- No scientific literature to assess how rosaceous breeders establish priorities.
 - Conflicting supply chain parties' priorities.

Objective of the Breeders' Survey

- To improve understanding of how breeders evaluate the importance of traits.
- To provide a baseline for the larger study.
 - Compare priorities assigned by rosaceous crop breeders and by supply chain parties.

Pre - Survey

Goal: To reduce the traits for each crop to around 50.

Crop	Strawberry			
Use	Fresh Market	Fresh and Ornamental (day neutral with novel flower colors)	Primarily Fresh Market	Primarily Processed Market (frozen, juice, dried, freeze- dried). Note that growers usually sell to a processor who pre-process the berry, and then sell to other processors who make the final product. Some (about 10%) Fresh Market
Traits	 Flavor Shelf Life Yield Size Color 	 Fruit Quality a. Size b. Shape c. Color d. Flavor e. Fragrance f. Sweetness g. Acidity h. Texture i. Anti-Oxidant content Disease Resistance Favorable Flowering Habit Flower Color 	 Note – 1-3 were listed as important traits 1. Productivity a. Yield/plant (weight) b. Overall number of fruit per plant c. Overall size of plant 2. Fruit Shape – symmetric 3. Firmness Note- 4-6 were listed as traits he is trying to improve: 4. Fruit color – external 	 Fruit Traits 1. Intense flavor 2. Intense red color – internal and external 3. Optimal size for harvesting 4. High Brix 5. Moderate runnering 6. High TA acidity 7. Low pH 8. Low drip loss 9. Uniform Shape Production Trait and Other 1. Short day types 2. Ever bearing

RosBREED

Enabling marker-assisted breeding in Rosaceae

Survey Sample Population

During April to June of 2010, we conducted a comprehensive internet survey of <u>60</u> rosaceous breeding programs in the U.S. and Canada.

J	a	n	u	а	ņ
---	---	---	---	---	---

		,				
Sun	Mon	Tue	Wed	Thu	Fri	Sat
27	28	29	30	31	1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31	1	2	3	4	5	6

Ма	у					
Sun	Mon	Tue	Wed	Thu	Fri	Sat
-25	26	27	28	29	30	1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30	31	1	2	3	4	5

September									
Sun	Mon	Tue	Wed	Thu	Fri	S			
29	30	31	1	2	3	4			
5	6	7	8	9	10	1			
12	13	14	15	16	17	1			
19	20	21	22	23	24	2			
26	27	28	29	30	1	1			
3	4	5	6	7	8	9			

-0	hr	112	r v	
•		ue	н у	
			-	

Sun	Mon	Tue	Wed	Thu	Fri	Sat
31	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	1	2	3	4	5	6
7	8	9	10	11	12	13

Jur	ne					
Sun	Mon	Tue	Wed	Thu	Fri	Sat
30	31	1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30	1	2	3
4	5	6	7	8	9	10

October						
Sun	Mon	Tue	Wed	Thu	Fri	Sat
26	27	28	29	30	1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31	1	2	3	4	5	6

N	March						
Su	ın	Mon	Tue	Wed	Thu	Fri	Sat
2	8	1	2	3	4	5	6
1	7	8	9	10	11	12	13
1	4	15	16	17	18	19	20
2	1	22	23	24	25	26	27
2	8	29	30	31	1	2	3
4	1	5	6	7	8	9	10

April						
Sun	Mon	Tue	Wed	Thu	Fri	Sat
28	29	30	31	1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	1
2	3	4	5	6	7	8

July								
Sun	Mon	Tue	Wed	Thu	Fri	Sat		
27	28	29	30	1	2	3		
4	5	6	7	8	9	10		
11	12	13	14	15	16	17		
18	19	20	21	22	23	24		
25	26	27	28	29	30	31		
1	2	3	4	5	6	7		

August									
Sun	Mon	Tue	Wed	Thu	Fri	Sat			
1	2	3	4	5	6	7			
8	9	10	11	12	13	14			
15	16	17	18	19	20	21			
22	23	24	25	26	27	28			
29	30	31	1	2	3	4			
5	6	7	8	9	10	11			

November										
Sun	Mon	Tue	Wed	Thu	Fri	Sat				
31	1	2	3	4	5	6				
7	8	9	10	11	12	13				
14	15	16	17	18	19	20				
21	22	23	24	25	26	27				
28	29	30	1	2	3	4				
5	6	7	8	9	10	11				

December

Sun	Mon	Tue	Wed	Thu	Fri	Sat
28	29	30	1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	1
2	3	4	5	6	7	8

Enabling marker-assisted breeding in Rosaceae

Survey Response Rate

- We obtained <u>35</u> complete responses (<u>58%</u> <u>response rate</u>) from Rosaceous breeding programs whose target crops are:
 - Apple scion and rootstock
 - Apricot scion
 - Cherry scion (sweet and tart)
 - Peach scion
 - Pear scion
 - Blackberry, red raspberry, strawberry, and
 - Rose.

Survey Focus

- To reduce complexity, we focused our analysis on <u>fruit scion</u> breeding programs.
 - We did not consider programs addressing rootstock (one response) and rose (two responses).
 - This reduced the sample size from 35 to 32 usable responses.

Responses Used

- Out of the 32 responses, we ended up using 24,
 - 8 programs in strawberry, 8 in peach, 4 in apple, and 4 in red raspberry.

Survey Questions - Section 1

3. How many years have you worked as a breeder?								
4. What type of organization are you working at as a breeder?	Eirst section:							
O Private sector	Background							
 University 	information of the							
 Federal 	breeding program							
Other, please specify:	e a main cron							
	bred main use of							
5. In 2009, how many full-time equivalent staff (breeders, scientific assistants	non-scientifics the target crop							
your program?	(fresh or processed							
Breaders (excluding yourself)	(ilesit of processed							
	ovporionce of the							
Non-scientific staff	brooder loading the							
Graduate students	program and ac							
Post-doc	program, and so							
Other please specify:	ON.							
ROSBREED N								

Enabling marker-assisted breeding in Rosaceae

Survey Questions - Section 2

SETTING PRIORITIES

Enabling marker-assisted breeding in Rosaceae

6. Using the scale bars, please rate on a 0-10 scale the importance of INTERESTED PARTIES that influence your setting of priorities when selecting a trait for inclusion in your breeding program (0=very unimportant, 10=very important). For each row, put the cursor at the number you think that best matches your rating and left click. After you click the bar, it will turn blue. Only blue bars will be recorded.

											Oecond
	Ver	y Unim	portant						Very	y Important	section:
	0	1	2	3	4	5	6	7	8	9 1	Considerations
Producers' needs											influencing
Wholesalers' needs											
Consumers' needs/preferences											priorities when selecting a trait
Nursery feedback											
Funding agency											for inclusion in
Own experience											the breeding
Experiences of											program:
colleagues/other breeders											interacted
Intended one of the one	-	-	-		-		-				mieresieu
intended use of the crop		_									parties.
Marketers' feedback											

Survey Questions - Section 2 (cont. a)

7. Using the scale bars, please rate on a 0-10 scale the importance of TECHNICAL CONSIDERATIONS that influence your setting of priorities when selecting a trait for inclusion in your breeding program (0=very unimportant, 10=very important). Put the cursor at the number you think that best matches your rating and click. After you click the bar, it will turn blue. Only blue bars will be recorded.

	Very	Very	<u>Second</u>							
	0	1	2	3	4	5	6	7	8	section:
Environmental effects on trait expression										Considerations
Availability of genetic variation for the trait										priorities when
Availability of resources										solocting a trait
Availability of expertise										
Previous research done by others/publications										tor inclusion in the breeding
Other, please specify:										program:
Other, please specify:										technical considerations

ROSBREED Enabling marker-assisted breeding in Rosaceae

Survey Questions - Section 2 (cont. b)

10. Using the scale bars, please rate on a 0-10 scale the challenges you face when DETERMINING your priorities (10=most challenging and 0=least challenging). Put the cursor at the number you think that best matches your rating and click. After you click the bar, it will turn blue. Only blue bars will be recorded.

	Lea	ist Cha	llenging				Most Challenging					
	0	1	2	3	4	5	6	7	8	9 10		
Lack of consistent /standardized information on genetic material										Second section:		
Lack of genetic material												
Lack of consistent/standardized information on methods										when		
Poor communication with interested parties										determining		
Separate short-term from long-term needs										selecting a trait		
Difficult to find consensus across interested parties										for inclusion in		
Uncertainty if variety being developed would be commercially viable										the breeding program.		
Other, please specify:												

ROSBREED

Enabling marker-assisted breeding in Rosaceae

Survey Questions - Section 2 (cont. c)

11. Using the scale bars, please rate on a 0-10 scale the challenges you face when IMPLEMENTING your priorities (10=most challenging and 0=least challenging). Put the cursor at the number you think that best matches your rating and click. After you click the bar, it will turn blue. Only blue bars will be recorded.

	Lea	st Cha	llenging					Most Challenging				
	0	1	2	3	4	5	6	7	8	Second		
Funding availability										section:		
Labor/staff availability												
Genetic markers availability	1	1	1							when		
Genetic material availability										implementing		
Trait heritability										priorities when		
Genetic variation										selecting a trait		
Land availability										for inclusion in		
Growing conditions at research farm										the breeding		
Lack of facilities										nrogram		
Other, please specify:										program		

Enabling marker-assisted breeding in Rosaceae

Survey Questions - Section 3

19A. What traits are you currently working to improve? Please circle the level of importance of each trait. If the trait is not relevant to your crop, please choose "Not applicable."

	Very Unimportan	t Unimportant	Neutral	Important	Very Important	Not Applicable	
Fruit firmness	0	0	0	0	0	0	
Fruit juiciness	0	0	0	0	Thir	d sectio	n.
Flavor	0	0	0	0		doro'	<u>.</u>
Sweetness	0	0	0	0	DIG	euers	
Flesh color	0	0	0	0	ratir	igs of	
Aromatics/volatiles	0	0	0	0	impo	ortance	of
Soluble solids (Brix)	0	0	0	0	vario	ous fruit	-
Titratable acidity	0	0	0	0	trait	(0.5 sc)	
pH	0	0	0	0	luan	(0-3)	aic,
Skin color	0	0	0	0	0=ve	ery	
Fruit shape	0	0	0	0	unin	nportan	t,
Fruit size	0	0	0	0	5=ve	erv	
Fruit uniformity	0	0	0	0	limn	rtant)	
Surface texture	0	0	0	0		Jitani).	

ROSBREED Enabling marker-assisted breeding in Rosaceae

Survey Questions - Section 3 (cont.)

You rated the following traits as "Very Important." Using the following 0-100 scaling bars, please specify the likelihood you will select these traits as your breeding targets (0=low likelihood, 100=high likelihood). Please place the cursor at the number that best matches your likelihood of breeding and click. After you click the bar, it will turn blue. Only blue bars will be recorded.

	Low	likeliho	od		High Likelibood				
	0	11	22	33	44	55	66	77	Third section:
» Fruit firmness									Likelihood
» Fruit juiciness									breeders would
» Flavor									select for each
» Sweetness									trait (on a
» Flesh color									
» Aromatics/volatiles									1-100 scale,
» Soluble solids (Brix)									0=lowest
» Titratable acidity									likelihood,
» pH									100-bigboot
» Skin color									TOU-nighest
» Fruit shape									likelinood).

ROSBREED

Enabling marker-assisted breeding in Rosaceae

Preamble to Data Analysis

• The analysis was complicated by the large number of individual traits selectable for one each crop.

<u>We aggregated individual traits for</u> <u>meaningful econometric analysis based</u> <u>on the expert opinion of a breeder using</u> <u>the criterion of similar contributions to</u> <u>fruit or plant characteristics.</u>

Preamble to Data Analysis (cont.)

- We refer to the aggregated traits as <u>trait</u> <u>clusters</u>:
 - Fruit texture
 - Fruit flavor
 - Fruit appearance
 - Biotic resistance
 - Abiotic resistance
 - Plant habit
 - Yield season
 - Postharvest quality
 - Phytonutrient content

ROSBREED Enabling marker-assisted breeding in Rosaceae

Breeder's Survey Data Analysis by Huixin Li

Model

 We used a double-bounded Tobit model to analyze the factors that affect breeders' likelihood for selecting a trait (Y).

$$Y = \begin{cases} 0 & if \ Y^* \le 0 \\ y^* & if \ 0 < Y^* < 100 \\ 100 & if \ Y^* \ge 100 \end{cases}$$

Enabling marker-assisted breeding in Rosaceae

The Tobit model allows censoring in both tails of the probability distribution of the dependent variable.

Model

• The dependent variable (Y) is the likelihood of selection for trait clusters,

 $Y_i^* = X_i\beta + \varepsilon_i$

 Y_i^* is a latent variable that is observed for values within the (0,100) range.

 X_i is the vector of explanatory variables including: (1) rating for the supply chain considerations influencing breeders' priorities, (2) ratings for challenges when determining priorities for selection, (3) years of experience of the breeder leading the program, (4) binary variable for the use of MAB at the breeding program; (5) binary variable for region where the program is located, (6) binary variable for the use of the target crop in the program (fresh or processed market), (7) binary variable to indicate the main crop in the program.

 β is the vector of parameters to be estimated and ε_i is the error term.

Coding in SAS®

- The analysis was done using the SAS® software
- Dependent variable: Likelihood (0-100)
- Independent variables:
 - Ratings for supply chain considerations: *Party1 Party2 Party3 Party5 Party6 Party8 Party9 Party10.*
 - Ratings for the challenges: Lack detchallenge4 detchallenge5 detchallenge6 detchallenge7.
 - Years of the breeder's experience: *Experience*.
 - Use of marker assisted breeding: MAB
 - Region where program is located: Pacific California Midwest Northeast Southeast Canada.
 - Use of the target crop (fresh market): *Fresh*
 - Main crop in the program: Apple Strawberry Peach RedRasp

Model - Variable Explanation

Variable	Survey question	Description
Party1	Q6	Producers' needs
Party2	Q6	Wholesalers' needs
Party3	Q6	Consumers' needs / preferences
Party5	Q6	Funding agency
Party6	Q6	Own experience
Party8	Q6	Intended use of the crop
Party9	Q6	Marketers' feedback
Party10	Q6	Retailers' feedback

Model - Variable Explanation (cont.)

	Survey	
Variable	question	Description
detchallenge1	Q10	Lack of information on genetic material
detchallenge2	Q10	Lack of genetic material
detchallenge3	Q10	Lack of information on method
detchallenge4	010	Poor communication with interested
	QIU	parties
detchallenge5	010	Separate short-term from long-term
detchallenges		needs
detchallenge6	010	Difficult to find consensus across
ueichallengeu		interested parties
detchallenge7	010	Uncertainty if variety being developed
		would be commercially viable

ROSBREED Enabling marker-assisted breeding in Rosaceae

Data Analysis - SAS® Code

Code: /*Dataset is trait.sas7bdat */ /*Dependent variable is Likelihood*/ /*Independent variables are listed in varlist */ /*Tobit model is used to do the estimation */

About the Code - Comments

- It is good style to comment your programs.
- You can use the comment statement anywhere in a SAS® program.
- SAS® will ignore the text in comments during execution.
- Syntax: *text; /*text*/

SAS® Code

/*Retrieve and organize the data*/

libname datapath "I:\tobit paper"; data work.trait; set datapath.trait; lack = (detchallenge1 + detchallenge2 +detchallenge3) / 3; run;

About the "Libname" Command

- Use permanent SAS data sets with Libname statement.
- Define: libname datapath "I:\tobit paper";
- Use: datapath.traits

SAS® Data Step

- Data steps start with the DATA statement
- Followed by a name you make up for a SAS® dataset
- You can create or redefine variables with assignment statements.

SAS® Code

/*The list of independent variables*/

%let varlist = Party1 Party2 Party3 Party5 Party6 Party8 Party10 Party9 lack detchallenge4 detchallenge5 detchallenge6 detchallenge7 Experience MAB Fresh California Midwest Northeast Pacific Southeast Canada **Apple Strawberry Peach** RedRasp;

SAS® Code (cont.)

data apple; set trait; if apple = 1; run;

proc means data=apple; var rank likelihood ; by clusterT; run;

ROSBREED Enabling marker-assisted breeding in Rosaceae

The Means Procedure

- Proc means provide simple statistics (mean, SD, min, max) on numeric variables.
- VAR statement specifies which variables to use in the analysis.
- BY statement performs separate analysis for each level of the variables in the list.

Proc Means Output

The SAS System

The MEANS Procedure

ClusterT=T1

Variable	N	Mean	Std Dev	Minimum	Maximum
Rank	14	4.8571429	0.3631365	4.0000000	5.0000000
Likelihood	14	89.8571429	14.4427631	60.0000000	100.000000

ClusterT=T2

Variable	N	Mean	Std Dev	Minimum	Maximum
Rank	32	4.3125000	0.9310937	2.0000000	5.0000000
Likelihood	29	74.5862069	22.7557171	0	100.000000

ROSBREED Enabling marker-assisted breeding in Rosaceae

SAS® Code

```
proc sort data=trait;
by clusterT;
run;
```

proc qlim data = work.trait; by clusterT; model likelihood = &varlist ; endogenous likelihood ~ censored(lb=0 ub = 100); run;quit;

RosBREED Enabling marker-assisted breeding in Rosaceae

The QLIM Procedure in SAS®

- The QLIM (qualitative and limited dependent variable model) procedure analyzes limited dependent variable models.
- The Tobit model can be specified with the CENSORED option in ENDOGENOUS statement.
- The bounds must be specified for the censored variable.

Proc QLIM Output

			The SAS System	11:35 Wed	nesday, Ap	pril 15,	2009 196				
			- ClusterT=T1								
		Th	e QLIM Procedure	•							
	Summary Statistics of Continuous Responses										
N Obs N Obs Standard Lower Upper Lower Upper Variable Mean Error Type Bound Bound Bound											
likelihood	72.67442	27.521629	Censored	0	100	2	21				

Model Fit Summary

1
likelihood
129
8
-522.27225
0.0000122
131
Newton-Raphson
1101
1181

Algorithm converged.

RosBREED

Enabling marker-assisted breeding in Rosaceae

Proc QLIM Output (cont.)

Parameter Estimates

			Standard		Approx
Parameter	DF	Estimate	Error	t Value	Pr 🏹 t
Intercept	1	-7.633647	82.073778	-0.09	0.9259
Party1	1	15.046650	7.266755	2.07	0.0384
Party2	1	-5.990506	2.905130	-2.06	0.0392
Party3	1	3.010886	6.611582	0.46	0.6488
Party5	1	2.882913	2.486217	1.16	0.2462
Party6	1	-0.104691	4.637829	-0.02	0.9820
Party8	1	-5.104112	4.590902	-1.11	0.2662
Party9	1	8.141696	4.528489	1.80	0.0722
Party10	1	-6.994701	4.967241	-1.41	0.1591
lack	1	-7.495478	3.332263	-2.25	0.0245
detchallenge4	1	-3.568662	2.951190	-1.21	0.2266
detchallenge5	1	1.683458	2.653359	0.63	0.5258
detchallenge6	1	3.200346	2.723413	1.18	0.2399
detchallenge7	1	0.698723	2.337953	0.30	0.7650
Experience	1	0.448975	0.592002	0.76	0.4482
MAB	1	10.223858	21.793737	0.47	0.6390

RosBREED

Enabling marker-assisted breeding in Rosaceae

Results

Parameter Estimates for the Tobit Model Analyzing the Factors Affecting Breeders' Likelihood to Select a Trait

Variable	Texture	Flavor	Appear- ance	Disease and pest resistance	Abiotic resistance	Plant habit	Yield/ Season	Post- harvest quality	Phytonu- trient content
Intercept	-7.63	73.60	11.56	-125.55	-99.76	-57.04	1.57	-189.21	-153.47
				Intereste	ed parties				
Producers	15.05**	-12.14**	5.03	-3.98	0.91	4.20	-7.43	14.21**	18.26***
Wholesale rs	-5.99**	1.62	-1.68	1.44	-3.84	-7.41***	-0.34	-5.57**	-7.98***
Marketers	8.14*	3.35	3.30	4.57*	5.14	6.46	8.70**	3.19	8.47**
Retailers	-7.00	4.45	-0.52	-0.37	-3.22	0.28	-4.36	8.51**	-4.51

Enabling marker-assisted breeding in Rosaceae

Results (cont.)

Parameter Estimates for the Tobit Model Analyzing the Factors Affecting Breeders' Likelihood to Select a Trait

				Disease and				Post-	Phytonu-			
Variahle	Texture	Flavor	Appear- ance	pest resistance	Abiotic resistance	Plant habit	Yield/ Season	harvest quality	trient content			
	Interested parties											
Consumer s	3.01	10.89**	4.33	13.75***	15.23***	10.53**	10.45**	0.63	-1.19			
Funding agency	2.88	-0.03	0.20	1.02	-0.32	1.58	0.06	-5.73***	3.71**			
Own experience	-0.11	1.09	0.14	2.64	-4.10	1.46	2.68	8.38**	12.77**			
Own experience	-0.11	1.09	0.14	2.64	-4.10	1.46	2.68	8.38**	12.77**			
Intended use of crop - Processing	-5.10	-8.33***	-2.98	-6.24**	3.67	-3.94	-6.30*	-8.33**	-11.52**			

ROSBREED Enabling marker-assisted breeding in Rosaceae

Results (cont. a)

Parameter Estimates for the Tobit Model Analyzing the Factors Affecting Breeders' Likelihood to Select a Trait

			Annoon	Disease and	Abiatia	Dlant	Viold(Post-	Phytonu-		
Variable	Texture	Flavor	Appear- ance	resistance	resistance	habit	Season	auality	content		
Challenges faced by breeders											
Lack of g. mat., inf. methods	-7.50**	-3.29	-2.49	-0.57	0.10	-8.01**	1.12	4.19	-5.65		
Poor comm. w/ int. parties	-3.57	-2.01	-2.21	-4.59**	0.64	-3.20	-5.81**	2.20	1.14		
Separate s. term from l. term needs	1.68	-3.24	-0.85	1.97	1.08	3.94*	3.05	-0.80	-0.30		

Results (cont. b)

Parameter Estimates for the Tobit Model Analyzing the Factors Affecting Breeders' Likelihood to Select a Trait

				Disease and				Post-	Phytonu-		
			Appear-	pest	Abiotic	Plant	Yield/	harvest	trient		
Variable	Texture	Flavor	ance	resistance	resistance	habit	Season	quality	content		
Challenges faced by breeders											
Difficult to	3.20	-1.31	-0.94	-0.51	-0.81	2.30	-1.28	-0.06	6.48***		
find											
consensus											
across											
interested											
parties											
Uncertaint	0.70	2.81*	2.96**	3.23**	1.38	2.13	2.20	-0.02	2.70		
y about											
commercia											
l viability											

ROSBREED Enabling marker-assisted breeding in Rosaceae

Results (cont. c)

Parameter Estimates for the Tobit Model Analyzing the Factors Affecting Breeders' Likelihood to Select a Trait

			Annear-	Disease and pest	Abiotic	Plant	Vield/	Post- harvest	Phytonu- trient			
Variable	Texture	Flavor	ance	resistance	resistance	habit	Season	quality	content			
Breeder leading the program												
Years of experience	0.45	1.92***	-0.11	0.39	-0.08	0.48	0.37	0.15	-0.27			
Characteristics of the breeding program												
Use of MAB	10.22	8.28	-8.74	-0.32	-20.26	-0.15	-8.93	19.64	25.07			
Pacific Northwest	-13.02	19.36	1.42	40.94**	8.58	-0.02	30.14	85.46***	-30.01			
California	-3.08	-28.28	1.21	24.46	19.80	3.55	18.62	31.02	-0.54			
Midwest	-41.18	1.61	-9.08	38.20**	-6.98	11.81	-9.14	52.91**	-50.51**			
Northeast	30.26	-10.25	5.00	40.50**	34.67	36.58*	23.10	18.91	-3.86			

ROSBREED Enabling marker-assisted breeding in Rosaceae

Results (cont. d)

Parameter Estimates for the Tobit Model Analyzing the Factors Affecting Breeders' Likelihood to Select a Trait

Variable	Texture	Flavor	Appear- ance	Disease and pest resistanc e	Abiotic resistanc e	Plant habit	Yield/ Season	Post- harvest quality	Phytonu- trient content
Southeast	14.85	46.70***	-2.95	54.32***	16.27	33.10*	31.73*	21.51	-5.98
Canada	-4.10	35.99**	14.49	57.03***	25.90	19.76	29.67	32.21*	-43.13**
		Charac	teristics of	the main c	crop in the	breeding p	program	•	
Crop is for the fresh market	3.66	-10.30	10.39	25.93*	9.32	10.43	27.40*	39.25**	42.12**
Apple	38.29	0.98	-6.11	-17.17	-10.67	-36.73**	-21.96	-8.38	25.06**

Results (cont. e)

Parameter Estimates for the Tobit Model Analyzing the Factors Affecting Breeders' Likelihood to Select a Trait

				Disease and				Post-	Phytonu-
Variabla	Toyturo	Flavor	Appear-	pest	Abiotic	Plant babit	Yield/	harvest	trient
variable	Iexture	Chara	cteristics of	f the main of	crop in the	breeding p	rogram	quanty	
Ctrossile orm	11.00	6.20	2 20	11 02**	11 15	22 00**	1 70	b(00***	11.05
y Strawberr	-11.08	0.29	-3.30	11.02***	-11.13	-22.80***	1./8	30.00	-11.03
Peach	-5.46	-4.51	9.05	-6.02	-0.96	-6.86	-3.53	0.69	6.62
Red raspberry	-6.86	19.76**	14.71**	28.44***	8.72	-2.53	0.24	61.30***	-9.23
Number of observatio ns	129.00	251.00	274.00	311.00	182.00	256.00	197.00	128.00	104.00

Conclusions and Implications by Karina Gallardo

Conclusions

- Trait clusters
 - ✓ Useful approach to simplify the breeders' challenges to assign program priorities.
- Consumer driven forces
 - Positively impacted breeders' likelihood of selection for traits than did producers and breeders' own experience.

Conclusions

- Technical challenges
 - Negatively affected the likelihood of selecting for sensory quality and plant habit.
- Societal challenges
 - Negatively impact on the likelihood of selecting for the trait clusters biotic and abiotic resistance, yield/season, and phytonutrient content.

Conclusions

- Breeding programs targeting the fresh market
 - Higher likelihood of selection for most trait clusters in the study.
- Complex nature of rosaceous breeding
 - Multiple traits that impact final fruit product, profitability and production environment.

Implications

- Initial information provided in this study
 - Useful to recognize a smaller group of individual traits to focus on and include in further studies eliciting values from supply chain stakeholders.
- Improve understanding from stakeholders and funding agencies
 - Challenges faced by breeders and help align priorities with the needs of the entire supply chain.

Acknowledgements

United States Department of Agriculture National Institute of Food and Agriculture

This project is supported by the Specialty Crop Research Initiative of USDA's National Institute of Food and Agriculture

IFA

Please fill out the survey evaluation! (You will be contacted via email)

> Today's presentation available at: http://www.extension.org/pages/67549

> > Sign up for PBG News: <u>http://pbgworks.org</u>

Watch past webinars and sign up for future webinars! http://www.extension.org/pages/60426

