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What is association genetics? 

 Association genetics is the process of identifying alleles that are 

disproportionately represented among individuals with different 

phenotypes. It is a population-based survey used to identify 

relationships between genetic markers and phenotypic traits 

– Two approaches for grouping individuals 

– By phenotype (e.g. healthy vs. disease) 

– By marker genotype (similar to approach used in QTL studies) 

– Two approaches for selecting markers for evaluation 

– Candidate gene 

– Whole genome  
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Association genetics: conceptual example 

Figure Credit: Nicholas Wheeler, Oregon State University 
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Comparing the approaches 

Criteria Family-based QTL Mapping Population-based Association Mapping 

Number of markers Relatively few (50 – 100’s) Many (100’s – 1000’s) 

Populations Few parents or grandparents with many 
offspring (>500) 

Many individuals with unknown or mixed 
relationships. If pedigreed, family sizes are 
typically small (10’s) relative to sampled 
population (>500) 

QTL analysis Easy or complex. Sophisticated tools minimize 
ghost QTL and increase mapping precision 

Easy or complex. Sophisticated tools reduce 
risk of false positives 

Detection depends on QTL segregation in offspring, and marker-trait 
linkage within-family(s) 

QTL segregation in population, and marker-
trait LD in mapping population 

Mapping precision Poor (0.1 to 15 cM). QTL regions may contain 
many positional candidate genes 

Can be excellent (10’s to 1000’s kb).  Depends 
on population LD 

Variation detected Subset (only the portion segregating in 
sampled pedigrees) 

Larger subset. Theoretically all variation 
segregating in targeted regions of genome 

Extrapolation to other 
families or populations 

Poor.  (Other families not segregating QTL, 
changes in marker phase, etc) 

Good to excellent.  (Although not all QTL will 
be segregate in all population / pedigree 
subsamples)  
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Essential elements of association genetics 

 Appropriate populations 

– Detection 

– Verification 

 Good phenotypic data 

 Good genotypic data 

– Markers (SNPs): Number determined by experimental approach 

– Quality of SNP calls 

– Missing data 

 Appropriate analytical approach to detect significant associations 
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Flowchart of a gene association study 

Figure Credit: Modified from Flint-Garcia et al., 2005 
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An association mapping population with 

known kinship 

– 32 parents

• 64 families

– ~1400 clones 

Figure Credits: Cooperative Forest Genetics Research Program, University of Florida 
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Phenotyping: Precision, accuracy, and more 

Figure Credits: Gary Peter, University of Florida 
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Genotyping: Potential genomic targets 

Figure Credit: Nicholas Wheeler and David Harry, Oregon State University 
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Whole genome or candidate gene? Let’s 

look again at how this works 

Figure Credit: Reprinted from Current Opinion in Plant Biology, Vol 5, Rafalski, Applications of single nucleotide polymorphisms in 

crop genetics, pages 94-100, 2002, with permission from Elsevier 
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Local distribution of SNPs and genes 

Figure Credit: Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Genetics, Jorgenson and Witte, 2006 
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Candidate genes for novel (your) species 

 Availability of candidate genes  

– Positional candidates 

– Functional studies 

– Model organisms 

– Genes identified in other forest trees 
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Candidate genes for association studies 

Functional candidates
 By homology to genes in other species

 By direct evidence in forest trees

Expression candidates
 Microarray analyses

 Proteomics

 Metabolomics
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Positional candidates
 QTL analyses in pedigrees
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Figure Credits: Kostya Krutovsky, Texas A&M University 
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Potential genotyping pitfalls 

 Quality of genotype data 

– Contract labs, automated base calls 

 Minor allele frequency 

– Use minimum threshold, e.g. MAF ≥ 0.05 or MAF ≥ 0.10 

– Rare alleles can cause spurious associations due to small samples 

(recall that D’ is unstable with rare alleles) 

 Missing data !!! 

– Alternative methods for imputing missing data 
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Statistical tests for marker/trait associations 

 SNP by trait association testing is, at its core, a simple test of 

correlation/regression between traits 

 In reality such cases rarely exist and more sophisticated 

approaches are required. These may take the form of mixed models 

that account for potential covariates and other sources of variance 

 The principle covariates of concern are population structure and 

kinship or relatedness, both of which may result in LD between a 

marker and a QTN that is not predictive for the population as a 

whole 
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Causes of population structure 

 Geography 

– Adaptation to local conditions (selection) 

 Non-random mating 

–  Isolation / bottlenecks (drift)  

–  Assortative mating 

–  Geographic isolation 

 Population admixture (migration) 

 Co-ancestry 
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Case-control and population structure 

Figure Credit: Reprinted by permission from Macmillan Publishers Ltd: Nature Genetics Marchini et al., 2004. 
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Accommodating population structure 

 Avoid the problem by avoiding admixted populations or working with 

populations of very well defined co-ancestry 

 Use statistical tools to make appropriate adjustments 
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Detecting and accounting for population 

structure 

 Family based methods 

  Population based methods 

– Genomic control (GC) 

– Structured association (SA) 

– Multivariate  

  Mixed model analyses (test for association) 
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Family based approaches 

 Avoid unknown population structure by following marker-trait 
inheritance in families (known parent-offspring relationships)  

 Common approaches include 
– Transmission disequilibrium test (TDT) for binary traits 

– Quantitative transmission disequilibrium test (QTDT) for quantitative traits 

– Both methods build upon Mendelian inheritance of markers within families 

 Test procedure 
– Group individuals by phenotype 

– Look for markers with significant allele frequency differences between 
groups 

 For a binary trait such as disease, use families with affected offspring 

 Constraints 
– Family structures must be known (e.g. pedigree) 

– Limited samples 
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Population based: Genomic control 

 Because of shared ancestry, population structure should translate 

into an increased level of genetic similarity distributed throughout 

the genome of related individuals 

 By way of contrast, the expectation for a causal association would 

be a gene specific effect 

 Genomic control (GC) process 

– Neutral markers (e.g. 10-100 SSRs) are used to estimate the overall 

level of genetic similarity within a sampled population 

– In turn, this proportional increase in similarity is used as an inflation 

factor, sometimes called , used to adjust significance probabilities (p-

values) 

– For example,   

– Typical values of  are in the range of ~0.02-0.10 

p-value(adj) = p-value(unadj) /(1+ ) 
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Structured association 

 The general idea behind structured association (SA) is that cryptic 

population history (or admixture) causes increased genetic similarity 

within groups 

 The challenge is to determine how many groups (K) are 

represented, and then to quantify group affinities for each individual 

 Correction factors are applied separately to each individual, based 

upon the inferred group affinities 

 SA is computationally demanding 
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Multivariate methods 

 Multivariate methods build upon co-variances among marker 

genotypes 

 Multivariate methods such as PCA offer several advantages over 

SA 

 Downstream analysis of SA and PCA data are similar 
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Mixed model approaches  

 Mixed models test for association by taking into account factors 

such as kinship and population structure, provided by other means 

 Provides good control of both type 1 (false positive associations) 

and type 2 (false negative associations) errors 
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Figure Credit: Fikret Isik, North Carolina State University 

Trait L1 L2 SNP1 P1 P2 G1 G2 G3 G4

y1 = 1 0 1 1 0 1 0 0 0 e1

y2 = 1 0 1 0 1 0 0 1 0 e2

y3 = 1 0 1 0 1 0 0 1 0 u1 e3

y4 = 1 0 b1 0 0 1 v1 0 0 1 0 u2 e4

y5 = 0 1 b2 0 1 0 v2 0 1 0 0 u3 e5

y6 = 0 1 0 0 1 0 0 0 1 u4 e6

y7 = 0 1 1 1 0 0 1 0 0 e7

y8 = 0 1 1 0 1 0 0 0 1 e8

yi = Xβ + Sα + Qv + Zu + ei

y3 = b1 + a1 + v2 + u3 + e3
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+* + *
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Significant associations for diabetes 

distributed across the human genome 

Figure Credit: Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Genetics McCarthy et al., 2008. 
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Association genetics: Concluding comments 

  Advantages 

–  Populations 

–  Mapping precision  

–  Scope of inference 

  Drawbacks 

–  Resources required  

–  Confounding effects 

–  Repeatability 
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Thank You. 
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