

The SolCAP Tomato Phenotypic Data: Estimating Heritability and Trait BLUPs

Dr. Heather L. Merk The Ohio State University, OARDC

Before Moving forward. You May Wirh to...

- Download, install, and open R
 R is available at www.r-project.org
- Download the script and data
 - Available at www.extension.org/pages/
 61006
 - Script TBRT2011.txt
 - Data TBRTQuality.csv

- Locate and obtain SolCAP phenotypic data
- Estimate trait heritability on a line mean basis
- Estimate BLUPs for a trait on a per line basis

Experiment Derign

- Field evaluations conducted in 2009, 2010
- Locations in CA, OH
- 2 reps in each year in each location (OH 2010 1 rep only)
- Randomized complete block design
- 143 processing breeding lines and varieties

 Donated by public breeding and genetics
 programs or commercially available
- Multiple fruit collected for each plot

Data Collection

- Fruit cut & scanned for size, shape, & color analysis
- Images analyzed using TomatoAnalyzer
 http://
 www.extension.org/
 pages/32374
- Quality analysis pH, Brix, titratable acids
- Obtain standardized data that can be stored in databases

locate Data – SolCAP Website

www.solcap.msu.edu

Solanaceae Coordinated Agricultural Project

Home	The SolC	AP project links together people from public
Potato	institutions, privat	e institutions and industries who are dedicated to the
Tomato	Germplasm	Solanaceae crops: potato and tomato. Through
Education/Outreach	Phenotype Data	, education and training the SolCAP project will focus mic advances to US tomato and potato breeding
Tools	GenotypeData	ead to significantly improved varieties that benefit the
Publications	processors, the co	onsumer and the environment.

http://www.solcap.msv.edu/tomato_phenotype_data.shtml

Home Potato Tomato

Tools

Links

Publications

Downloads

Contacts

Education/Outreach

Impacts and Outcomes

The SolCAP project is

Agriculture and Food Research Initiative

Program of USDA's

National Institute of Food and Agriculture.

supported by the

Applied Plant

Genomics CAP

Tomato Phenotype Data

The tomato cooperator's guide organizes standardized phenotypic data from a collection of elite US tomato germplasm that will be collected over two years across distinct environments (CA, OH, NC, FL). Trials have been organized by market class with fresh market material grown in CA, NC, and FL. Processing germplasm is evaluated in CA and OH. Plots of each tomato line will be replicated twice at each site. The phenotypic data emphasizes fruit quality characteristics. Passport data is also collected for each site and year. These data will be used in combination with SNP genotyping to survey the distribution of phenotypic and genotypic variation among varieties and breeding lines.

Cooperator Guides:

2009 California Fresh Market Material 2009 California Processing Material 2009 North Carolina Fresh Market Material 2009 North Carolina Vintage Material 2009 Ohio Processing Material 2009 Ohio Vintage Material 2010 California Fresh Market Material 2010 California Processing Material 2010 Florida Fresh Market Material 2010 North Carolina Fresh Market Material 2010 North Carolina Vintage Material 2010 Ohio Processing Material 2010 Ohio Vintage Material

Transverse and Cross Section Fruit Images:

2009 California Fresh Market Material 2009 California Processing Material 2009 North Carolina Vintage Material 2009 Ohio Processing Material 2009 Ohio Vintage Material

- Data available in coop guides (.xls format)
- Images available in zip folders – WARNING – these are large!

Department of Agriculture National Institute of Food and Agriculture

locate Data – SGN Web/ite www.solgenomics.net

• Data will be available in a searchable database

Sample Analysis Using Brix Data

- Data file ready for analysis: TBRTQuality.csv
- R Script used for analysis: TBRT2011.txt
- Available at: www.eXtension.org/pages/ 61006

Working with R Introduction to R Webinar Recording http://www.extension.org/pages/60427

Setting Working Directory in R

 Simplifies commands for importing and exporting data by eliminating the need to write full path statements

R F	RGui (64-bit)								
File	Edit View Misc Pack	ages Windows Help							
	Source R code] @							
	Open script								
	Display file(s)								
	Load Workspace	-12-16) R Foundation for Statistical Computing ngw32/x64 (64-bit) comes with ABSOLUTELY NO WARRANTY. istribute it under certain conditions. icence()' for distribution details.							
	Save Workspace								
	Load History Save History								
	Change dir								
	Print	port but running in an English locale							
	Save to File	roject with many contributors.							
_	Exit	for more information and cite R or R packages in publications.							
Ty 'h Ty >	npe 'demo()' for som nelp.start()' for an npe 'q()' to quit R	me demos, 'help()' for on-line help, or n HTML browser interface to help.							
•		PC							

Importing & Checking Data

Visualizing Data

hist(Brix, col="gold")

boxplot(Brix~Loc, xlab="Location", ylab="Degrees Brix", main = "Degrees Brix by Location", col="pink")

Multi-year. Multi-location Data

- Brix data from 143 lines collected in 2 years, 2 locations, 2 reps per location
- Model (BRIX ~ (LINE) + (LOC) + (YEAR) + (REP%in%LOC:YEAR) + (LINE:LOC) + (LINE:YEAR))
 - Denote nesting using %in%
 - Denote interactions using a colon or asterix between terms

Treating Main Effects

- Need to make decisions of whether to treat main effects as fixed or random
 - This has implications for analysis
- Random effects used when we believe our data are drawn from a subset representing all possible genotypes (locations, years, etc...)
- For many plant breeding applications we would consider main effects to be random, and would want to estimate the proportion of variance due to effects in our experimental design (e.g. estimates of heritability)
- Use Ime4 package in R

Installing & loading Ime4 Package

Install - first time

RGui (64-bit) - [R Console]	
R File Edit View Misc Packages Windows Help	
Load package	
as.factor(OHColor\$Linas.factor(OHColor\$Linas.factor(OHColor\$Linas.factor(OHColor\$Linas.factor(OHColor\$Linas.factor)) Set CRAN mirror	98:
as.factor(OHColor\$Li) Install package(s)	
as.factor(OHColor\$Li	<pre>> library(lme4) Loading required package: Matrix</pre>
as.factor(OHColor\$Li: Install package(s) from local zip files.	Loading required package: lattice
as.factor(OHColor\$L11_,	Attaching package: 'Matrix'
 Load – every time 	The following object(s) are masked from 'package:base':
	det
 library(lme4) 	Attaching package: 'lme4'
	The following object(s) are masked from 'package:stats':
	AIC
	Warning messages: 1: package 'lme4' was built under R version 2.12.2 2: package 'Matrix' was built under R version 2.12.2 >

Calculating Variance Components

- brixvarcomp = lmer(BRIX ~ (1|LINE) + (1| LOC) + (1|YEAR) + (1|REP%in%LOC:YEAR) + (1|LINE:LOC) + (1|LINE:YEAR))
- summary(brixvarcomp)

Linear mixed model fit by REML							
Formula: BRIX ~ (1 LINE) + (1 LOC) + (1 YEAR) + (1 REP %in% LOC:YEAR) + (1							
LINE:LOC) + (1 LINE:YEAR)							
AIC BIC logLik (deviance RE	MLdev					
1758 1797 -871	1742	1742					
Random effects:							
Groups	Name	Variance	:d.Dev.				
LINE:YEAR	(Intercept	0.01021213	101055				
LINE:LOC	(Intercept	0.00948028	.097367				
LINE	(Intercept	0.19193287	438101				
YEAR	(Intercept	0.03164132	177880				
LOC	(Intercept	0.18845950	434119				
REP %in% LOC:YEAR	(Intercept	0.00056113	023688				
Residual		0.25781992	.507760				
Number of obs: 967	, groups: L		LINE:LOC, 281; LINE, 143; YEAR, 2; LOC, 2; REP %in%				
LOC:YEAR, 1							
Fixed effects:							
Estima	Estimate Std. Error t value						
(Intercept) 5.28	17 0.33	15.76					

Estimating Heritability on a line Mean Basis

- Heritability = var(LINE)/[var(LINE) + var (LINE:LOC)/2 + var(LINE:YEAR)/2 + var (RESIDUAL)/4]
 - = 0.1919/[0.1919 + (0.0095/2) + (0.0102/2) + (0.2578/4)]

= 0.72

ATC BTC log	Lik deviance RE	MLdev								
1758 1797 -	871 1742	1742								
Random effects	:									
Groups	Name	Variance	Std.Dev.							
LINE:YEAR	(Intercept) 0.01021213	0.101055							
LINE:LOC	(Intercept) 0.00948028	0.097367							
LINE	(Intercept) 0.19193287	0.438101							
YEAR	(Intercept) 0.03164132	0.177880							
LOC	(Intercept) 0.18845950	0.434119							
REP %in% LOC:	YEAR (Intercept) 0.00056113	0.023688							
Residual		0.25781992	0.507760							
Number of obs:	967, groups: L	INE:YEAR, 28	4; LINE:LOC	, 281;	LINE,	143;	YEAR,	2; LOC,	2;	RE
LOC-VEAD 1										

Selection

- When estimating heritability, ignore main environmental effects
- Justification for doing so is in part because assume that will account for these effects prior to selection
- Make selections based on BLUPs

BLUP

- Best Linear Unbiased Predictor
- Allows us to account for environmental factors in our model, missing data, etc..
- BLUPs shrink estimates toward the mean
- Calculate a BLUP for each line for each trait
- Make selections based on BLUPs

Estimating BLUP for Each line

```
> ## BLUPS
> # fit the model
> brixmodel = lmer(BRIX ~ (1|LINE) + (1|LOC) + (1|YEAR) + (1|REP%in%LOC:YEAR) + (1|LINE:LOC) +
(1|LINE:YEAR))
> # estimate BLUPS
> brixblup = ranef(brixmodel)
> # look at output structure
> str(brixblup)
List of 6
              :'data.frame': 284 obs. of 1 variable:
$ LINE:YEAR
...$ (Intercept): num [1:284] -0.01287 0.00562 0.04129 -0.04924 0.00459 ...
 $ LINE:LOC
                  :'data.frame': 281 obs. of 1 variable:
 ..$ (Intercept): num [1:281] -0.00806 0.00132 0.01163 -0.01901 0.0381 ...
                    :'data.frame': 143 obs. of 1 variable:
 $ LINE
 ..$ (Intercept): num [1:143] -0.1363 -0.1494 -0.0535 -0.0388 1.1357 ...
 $ YEAR
                   :'data.frame': 2 obs. of 1 variable:
 ..$ (Intercept): num [1:2] 0.125 -0.125
                  :'data.frame': 2 obs. of 1 variable:
 $ LOC
 ..$ (Intercept): num [1:2] -0.306 0.306
 $ REP %in% LOC:YEAR:'data.frame': 1 obs. of 1 variable:
 ..$ (Intercept): num -1.59e-13
 - attr(*, "class")= chr "ranef.mer"
> # extract blup for line
> brixlineblup = brixblup$LINE
> # see the structure of the blup for each line
> str(brixlineblup)
'data.frame': 143 obs. of 1 variable:
 $ (Intercept): num -0.1363 -0.1494 -0.0535 -0.0388 1.1357 ...
> # save the brixlineblup output to a separate .csv file
> write.csv(brixlineblup, file="BrixLineBLUPS.csv")
```

BLUP Distribution

BLUPs and line Means

- Highest values for lines developed for arid environment
- BLUP shrinks outliers toward the mean
- Brix and yield are significantly negatively correlated – this has implications for selection....

Acknowledgements

Ohio State

- Dr. David Francis
- Dr. Sung-Chur Sim
- Debora Liabeuf
- Troy Aldrich
- Nancy Huarachi Morejon
 UC Davis
- Dr. Allen Van Deynze
- Dr. Shawn Yarnes

Campbell's Soup

- Dr. Nankui Tong University of Florida
- Dr. Jay Scott
- Dr. Sam Hutton

USDA/ARS Geneva

- Dr. Joanne Labate Cornell – Long Island
- Dr. Meg McGrath
 NC State
- Dr. Dilip Panthee Michigan State
- Dr. C. Robin Buell
- Dr. Candy Hansey SGN
- Dr. Lukas Mueller
- Dr. Naama Menda

