

United States Department of Agriculture National Institute of Food and Agriculture

Solanaceae Coordinated Agricultural Project

Downstream analysis with SNP markers Part I: Introduction to computer software for data analysis

Sung-Chur Sim The Ohio State University, OARDC SolCAP workshop

Outline

Ort I: Introduction to computer software

- MicroSatellite Analyzer (MSA)
- Graphical GenoType (GTT)
- STRUCTURE

 \checkmark What can you do using the software?

✓ Where can you download the software?

 \checkmark How can you format input data ?

Part II: The use of STRUCTURE for association mapping

• Detail steps to generate a Q-matrix using STRUCTURE

MicroSatellite Analyzer: MSA

- On independent analysis tool for large data sets (Dieringer and Schlötterer 2003)
 - Descriptive statistics per population and locus (e.g. allelic richness, heterozygosity, and Shannon index of diversity)
 - F_{ST} , F_{IS} , and F_{IT} based on the Weir and Cockerham method
 - F_{ST} per locus and population pair ; P-value for F_{ST} determined by permuting genotypes among groups
 - Genetic distance including Nei's standard genetic distance
 - Converts your data into the formats of GENEPOP, STRUCTURE, ARLEQUIN, etc.
- Version 4.05 available for Windows, Linux, and Mac: (<u>http://i122server.vu-wien.ac.at/MSA/MSA_download.html</u>)

http://i122server.vu-wien.ac.at/MSA/MSA_download.html

Input format

0	1 - 0	-)	≂		Colorest.			
	Home	Inse	ert	Page	Layout	Formula	s Dat	a Rev	view V
	🐂 🔏 Cut			Calibri	-	11 -	A* _*	= _	- N AT
	Сору			Cullon			AA		
Pa	ste 🛷 Format Pa	aint	er	BI	<u>u</u> -		• <u>A</u> •		
	Clipboard		5		Fon	t	Gi j		Alig
	L1			• ()	f _x				
	А	B	0	D	E	F	G	н	I
1		1							
2									
3				CT10004	CT10015	CT10019	CT10024	CT10039	CT10050
4	Processing	h	1	13	11	11	14	14	11
5	Processing	h	1	13	11	11	14	14	11
6	Processing	h	1	13	11	11	14	14	11
7	Processing	h	1	13	11	11	14	14	11
8	Processing	h	1	13	11	11	14	14	11
9	Processing	h	1	13	11	11	14	14	11
10	Processing	h	1	13	11	11	14	14	11
11	Processing	h	1	13	11	11	14	14	11
12	Processing	h	1	13	11	11	14	14	13
13	Processing	h	1	13	11	11	14	14	13
14	Processing	h	1	13	11	11	14	14	11
15	Processing	h	1	13	11	11	14	14	11
16	Processing	h	1	13	11	11	14	14	11
17	Processing	h	1	13	11	11	14	14	11
18	Processing	h	1	13	11	11	14	14	11
19	Processing	h	1	13	11	11	14	14	11
20	Processing	h	1	13	11	11	14	14	11
21	Processing	h	1	13	11	11	14	14	11

One or two column format

- Specify **one (1) or two (2)** column format in the cell A1
- Enter name of population in the first column (no empty cell)
- Specify **inbred (h) or outbred (d)** for your species in the second column (no empty cell)
- Enter group number of population (no empty cell)
- SNP data converted from letter codes to numerical coding
- Missing data cam be indicated by -1, nd, dot(.), or empty cell
- Save your data in the format **"TAB DELIMITED"**

Identify loci that distinguish populations

 $F_{ST} = 0$: an allele of a gene is fixed or the gene is under balancing selection

 $F_{ST} = 1$: a gene under diversifying selection

Graphical GenoType: GGT

- A tool for representing molecular marker data by graphical representation and color coding of chromosomes
 - Useful for evaluation of plant material and selection of a desired genotype
- Advanced genetic analyses
 - Marker-trait association
 - Genetic distance
 - Linkage disequilibrium
- Version 2.0 available for Windows (<u>http://www.plantbreeding.wur.nl/UK/software_ggt.html</u>)

🔗 Graphical genotypes - Windows Internet Explorer					-											x
E S S A http://www.plantbreeding.wur.nl/UK	/software_ggt.html											• 🗟 😽 🗙 🐰	define:descent		,	0 -
x Google ggt	🔻 🚰 Search 🔹	· 🖗 • 🏟 •	💈 Share 🔹 👰	• 📼 • 🧭 S	idewiki 🔹 🎒 Che	ck 🔹 🌲 Translat	te 🔹 🎦 Aut	toFill 🔹 🌛	🔍 ggt					B	• 🔘 Sign	In •
× 🔰 ggt hl=en	D bing	Rews	Entertainment	Q Video	Sports M	Noney Aut	tos L	ifestyle	CO Health	A-List	Search Fun		1810	00	P Sig	n in
🙀 Favorites 🛛 🛔 🖉 New Tab 🔏 Suggested Sites	👻 🙋 Web Slice Ga	llery 🔻														
🔠 🔹 🎉 Partitioning variance in A 🥻 SolCAP So	olanaceae Coordi	📮 Graphical g	genotypes X									🤚 🏠 🕶 🔊	👻 🖃 💌 Page 🕶	Safety 🔻	Tools 🔻 🌘	0-
_	WAGENI	NGEN UR For quality of life	•				Log in	Th	is Site	•	Search Search Advar	Links nced Search				A
http://	ducation Resea	rch Publi	ications Nev antb	vs & Calendar	About Wagenin	ngen UR Wo	rk at Pl	hone book	Contac	oftv	vare	e_ggt	.html			
F	Plant Breeding Education				Latest upd	ate: February	2010									
	Research Publications		» DOWN	LOAD GGT :	2.0 (Versie: 201)										
	About Plant Bree	r eding	GGT, wh	at is it ? Clic	ck to find out mor	e										
	Work at Phone book Links Contact			• GGT of G Please cite	R 2.0: Versatile So Genetic Data Jour e either paper if y leading to a	eference: oftware for Visu nal of Heredity you have used scientific publi	ualization a / 2008 99(2 GGT 2.0 i ication	and Analys 2):232-23 in researc	sis 6 h							
				There is also features a	o a POSTER [PE nd possible use o can be read in t)F, updated Ja of GGT 2.0 and he GGT 2.0 us	n '06] that d detailed i ser manual	t explains instructior	the is							
			GGT Upo	lates :												
			update F	eb 2010												
			 No be Ne fixe 	new develop possible w Build with e ed estimation	oments are plann extended expiration of phase in DH v	ed for GGT 2.0 on date of 201 vith many missi	0 but occas 5 ing data po	sional sup pints	oport will st					6-1	1000/	Ŧ

Input format

- Two data files derived from locus and map data
- 👏 Locus file
 - Contains data on marker alleles using the MapMaker or JoinMap type of coding
 - A plain text file

Locus file

```
; This file was used as input for the JOINMAP mapping software
; use the BUIL GGT FILE option to merge '.loc' and '.map' files into a
'.ggt' file
; Fri, 10 Jan 1997, 11:54
; grouping file: mylvuniq.grp
; original file: mylvunig.loc
; linkage group: 1
name = lvuniq-1
popt = RI9
nloc = 72
nind = 103
E42M32-231#1
  aaaaa -ca-a caccc aacca cacac caaca aaaca cccca accaa accca
  caaac aaaaa accaa acccc accaa cccac acaaa caccc caaaa ccaac
  CCC
E33M61-740
  aaaaa aaaca caccc aacca aacac caaca caaca acaaa acacc accaa
  cacaa acaaa accca ccccc accaa accac accaa caaca caaaa caaac
```

Input format

- Two data files derived from locus and map data
- 👏 Locus file
 - Contains data on marker alleles using the MapMaker or JoinMap type of coding
 - A plain text file
- 🐡 Map file
 - Specifies marker positions on a linkage map
 - A plain text file

Map file

; Genetic map file of a Barley RIL population ; chromosome 1

chrom 1

E33M55-508	0.0
ЕЗ9М61-574	1.8
Е35м48-228	4.0
ЕЗЗМ61-740	14.6
E35M54-93	14.6
Е41м40-112	20.7
Е42м51-267	23.3
E42M32-231#1	26.5
Е42м40-287	28.5
ЕЗЗМ61-120	29.2
F37M32-00	38 O

Input format

- Two data files derived from locus and map data
- 👏 Locus file
 - Contains data on marker alleles using the MapMaker or JoinMap type of coding
 - A plain text file
- 🐡 Map file
 - Specifies marker positions on a linkage map
 - A plain text file
- Build a GGT file by merging the locus and map files using the 'Build GGT-file' option
- The GGT file can also be prepared from an Excel spreadsheet

N :	mallggt.xls						14		_
	A	В	С	D	E	F	G	Н	. I
1	alias		geno1	geno2	geno3	geno4	geno5		
2							1.1.		2
3	nchrom	2							
4	nind	5							
5	popt	F2				(<u></u>		
6	,locus	pos	alleles			<u> </u>]	
7									
8	name=group1								
9	marker1	0	A	В	A	A	В		
10	marker2	25.8	A	U	Α	H	B		
11	marker3	76.9	Н	В	A	H	H		
12	marker4	101.3	U	В	Н	Α	A	i i	
13									
14	name=group2					1			
15	marker21	15.5	Н	В	Α	Н	Α		
16	marker22	43.7	Н	В	A	H	В		2
17	marker23	81	Α	U	Α	Н	В		
18									
19									
20	2					-			-

STRUCTURE

☆ A model-based clustering method (Pritchard et al. 2000)

- Inferring population structure using multi-locus genotype data
- Generating a Q-matrix to correct for population subdivision during marker-trait association analysis in complex populations (e.g. breeding populations)
- Identifying migrants and admixed individuals
- Version 2.3.3 available for Windows, Linux, and Mac: (<u>http://pritch.bsd.uchicago.edu/structure.html</u>)

http://pritch.bsd.uchicago.edu/structure.html

Input format

🔀 N	licro	sof	t E	cel -	Intron	& EST	mar	ker da	ıta read	y te	o run Stru	cture (8	8-6-C
8	Eile	Ē	lit	⊻iew	Insert	For	mat	<u>T</u> ools	<u>D</u> ata	<u>W</u> i	ndow <u>H</u> elp		
											Arial		
- D	<u>e</u> 2		e		a D	ABC	¥	Ba ff	۹ ⊲⊄			ΞΣ	- AI
= 🗆	E1.4	•		-	- C	•	00		9 · .~			- ee	2 ¥
	1 14	0	Δ	•	/x F	3		c .	D		F	F	
1					-	,	СТ10	453	CT10162	,	CT10184	CT1018	7 (
2	6	am	nhe	1128		1	0110	14	0110102	. 12		CITOR	13
3	c	am	pbe	1128	-			14		12	-1		13
4		Fla	706	0	-	1		12		13	12		13
5		Fla	706	0	-	I		12		13	12		13
6		Fla	754	7	1	1		12		12	12		13
7		Fla	754	7	1	I		12		12	12		13
8		Fla	777	1	1	1		14		12	12		13
9		Fla	777	1	-	I		14		12	12		13
10		Fla	777	5	1	1		14		13	12		13
11		Fla	777	5	1	I		14		13	12		13
12		Fla	760	0	1	I		14		12	13		13
13		Fla	760	0	1	I		14		12	13		13
14	I	Flor	ada	de	1	I		14		12	12		13
15	I	Flor	ada	de	1	1		14		12	12		13
16	N	IC23	E-2	(93)	1	1		14		12	13		13
17	N	C23	E-2	(93)	1	1		14		12	13		13
18		NC	353	-1	1	1		12		13	13		13
19		NC	353	-1	1	I		12		13	13		13
20		NC	8417	73	1	I		12		13	12		13
21		NC	841)	73	1	I		12		13	12		13
22		NC	9824	48	1	I		14		12	13		13
23		NC	9824	48	1	1		12		12	13		13
24	I	NC9	947	1-3	1			12		12	13		13
25	I	NC 9	947	1-3	1	l .		12		12	13		13
26		NC	EBR	2	1	I		14		12	13		13
27		NC	EBR	2	1	I		14		12	13		13
28	0	Dhio	-MF	213	1	I		14		12	12		13
29	0	Dhio	-MF	213	1	1		14		12	12		13

A matrix where the data for individuals are in rows, the loci are in column

- *n* consecutive rows have the data for each individual of *n*-ploid species
- **Integer** should be used for coding genotype
- Missing data should be indicated by a number which doesn't occur elsewhere in the data (e.g. -1)
- The data file should be a text file (.txt) not an excel file (.xls) for running STRUCTURE

Summary

- Three computer programs, MSA, GGT, and STRUCTURE were introduced for SNP data analysis by providing the following information:
 - What can the programs do?
 - Where can you download them?
 - How can you format input data for each program?

United States Department of Agriculture

National Institute of Food and Agriculture

Solanaceae Coordinated Agricultural Project

Downstream analysis with SNP markers Part II: The use of STUCTURE software for association mapping of bacterial spot resistance in tomato

Sung-Chur Sim The Ohio State University, OARDC SolCAP workshop

Bacterial spot in tomato

- A disease complex caused by species of *Xanthomonas* bacteria.
- ✤ Five physiological races: T1-T5
- Sources of resistance from close relatives of cultivated tomato (Solanum lycopersicum L.) or S. pimpinellifolium
 - Hawaii 7998 (T1)
 - Hawaii 7981 (T3)
 - PI128216 (T3)
 - PI114490 (T1, T2, T3, and T4)

Association analysis models incorporate a correction for population structure

Unified mixed model (Yu et al. 2006)

Y	=	μ		RE	EPy	/	+		(Qw		+	N	lar	ke	rα	+				Z	V						+ E	Erro	r
y 1	se s	[1]	6 8	[1	0	0	<i>i</i> 1	1	0	0	0]		0	0	1		1	0	0	0	0	0	0	0	0	0]	[v ₁]	í	[e1]	
<i>y</i> ₂		1		1	0	0		1	0	0	0		0	1	0		0	1	0	0	0	0	0	0	0	0	v ₂		e_2	
88				1	0	0		1	0	0	0		0	0	1		0	0	1	0	0	0	0	0	0	0	23		23	
168 168		22		1	0	0	F.: 1	0	1	0	0	[w]	1	0	0	122313	0	0	0	ą.	0	0	0	0	0	0	33		35	
35	÷.	12	[]+	0	1	Ő.	<i>y</i> 1	0	1	0	0	w ₂ _	1	0	0		0	0	0	0	1	Ô,	0	0	0	0	333		835	
37	P	335	[/4] *	0	1	0	<i>y</i> ₂ +	0	1	0	0	w ₃	0	1	0	- 4	0	0	0	0	0	1	0	0	0	0	8 3	- 7E-		
8		353		0	1	0	[<i>V</i> 3]	0	0	1	0	w ₄	0	0	1	[42]	0	0	0	0	0	0		0	0	0	33		32	
-		8		9	1	0		0	0	<u>g</u> .,	្ស		12	Q	0		0	٥Ç	0	0	0	0	9	1	0	0	:22		32	
5.3				0	0	1		0	0	0	1		0	Ø	1		0	0	0	0	0	Q	0	0	t	0	.30		197. 197.	
y.,		1	e 7.	0	0	1		o	0	0	1		þ	0	1		0	0	0	0	0	0	0	0	0	1	γ,	2.3	e,	

Adding a matrix, Qw, of population structure can correct for pseudo-linkage and can add insight to which crosses, pedigrees, subpopulations have the highest breeding value

Format marker data

G		• • • •	-		3				Input	Data_Spot	Populatio	n [Compa	tibility Mor	le] - Micro	soft Excel									×
L.	Home	Insert	Page	e Layout	Formul	las Di	ata Re	view Vi	ew														0 -	σx
ſ	Cut	ру	Arial		• 10 •	A A	==	= »·	📑 Wra	p Text	Ge	neral	*	3				*	Σ	AutoSum Fill *	Ż	A		
Pa	ste 🛷 Forr	mat Painter	BI	<u> </u>		• <u>A</u> •			Mer Mer	ge & Cente	er • \$	• % •	•.0 .00 .00 →.0	Conditio	nal Forma ng * as Tab	at Cell Ie≖Styles≛	Insert	Delete For	∙ Q	Clear *	Sort & Filter *	Find & Select ▼		
	Clipboard	d 🕞		For	nt	5		Align	ment		Gi I	Number	r G		Styles			Cells		F	diting			
	R12	-	• ()	f_{x}	13																			×
	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	Ŵ	X
1		M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17 I	M18	M19	M20	M21	M22	M23
2	6111R1	11	13	3 11	1 1	i3 1	12 1	.3 13	3 11	11	1 1	2 1	2 12	2 13	3 11	i -1	14	13	11	14	13	12	2 13	3
3	6111R1	11	13	14	4 1	3 1	13 1	/1 14	14	14	4 1	2 1	2 11	1 12	2 11	-1	14	13	11	11	13	12	! 13	3
4	6111R2	11	13	11	1 1	3 1	12 1	.3 13) 11	11	1 1	2 1	.2 12	2 13	3 11	11	11	13	11	14	13	12	! 13	3
5	6111R2	11	13	; 14	4 1	3 1	12 1	.3 13) 14	- 14	4 1	2 1	.2 11	1 13	3 11	11	11	13	11	11	13	12	! 13	3
6	6111R3	11	13	/ 11	1 1	/3 1	12 1	.3 13	/ 11	14	4 1	2 1	2 12	2 13	3 11	11	11	13	11	14	13	12	! 13	\$
7	6111R3	11	13	; 14	4 1	.3 1	12 1	.3 13	/ 11	14	1 1	2 1	2 12	2 13	3 11	11	11	13	11	14	13	12	: 13	\$
8	6111S1	11	13	14	4 1	.3 1	12 1	3 13	/ 11	14	4 1	2 1	2 12	2 13	3 11	-1	11	13	11	11	13	12	: 13	3
9	6111S1	11	13	14	4 1	.3 1	12 1	3 13	/ 11	14	1 1	1 1	2 12	2 13	3 11	-1	11	11	11	11	13	12	: 13	\$
10	6111S2	11	13	1 11	1 1	.3 1	12 1	3 13	11	14	1 1	2 1	2 12	2 13	3 11	11	11	13	11	14	13	12	: 13	3
11	6111S2	11	13	14	4 1	.3 1	13 1	1 14	11	14	1 1	2 1	2 12	2 13	3 11	11	14	11	11	11	13	12	: 13	3
12	6115S3	11	13	14	4 1	.3 1	12 1	3 13	11	14	1	2 -	1 12	2 13	3 11	11	11	13	11	14	13	12	. 12	2
13	6115S3	11	13	14	4 1	.3 1	13 1	1 14	11	14	1 1	2 -	1 12	2 13	3 11	11	11	13	14	11	13	12	: 12	2
14	6115S4	11	13	1 11	1 1	.3 1	13 1	1 14	11	14	1	2 1	2 12	2 13	3 11	11	11	13	14	14	13	12	. 12	<u> </u>
15	611554	11	13	14	4 1	3 1	13 1	1 14	11	14	1	2 1	3 12	2 13	3 11	11	14	13	14	14	13	12	12	2
16	611/R1	11	13	11	1 1	3 1	12 1	3 13	11	14	1	2 1	2 12	2 13	3 11	11	14	13	11	11	13	12	13	}
17	6117R1	11	13	14	4 1	3 1	12 1	3 13	11	14	1	2 1	2 12	2 13	3 11	11	14	11	11	11	13	12	13	3
18	611/R2	11	13	/ 11	1 1	3 1	12 1	3 13	/ 11	14	1	2 1	2 12	2 13	3 11	11	11	13	11	14	13	12	12	
19	6117R2	11	13	1 11	1 1	3 1	12 1	3 14	11	14		2 1	2 1:	2 13	3 11	11	14	13	14	14	13	12	12	2
20	011/01	11	13		1 1	3	12	3 13	1 11	14		2 1	Z 14	1 13) 11 2 44	11	14	13	11	14	13	12	. 12	
21	611/51	11	13	14	4 1	3	13 1	1 14	· 11	14		2 1	Z 14	1 13	1 11	11	14	11	14	11	13	12	. 12	-
22	011/52	11	13	14	4 1	3	12 1	3 13		11		2 1	2 14	1 13) 11		11	13		14	13	12	. 13	,
20	011/02	11	13	1 14	4 1	3	10 1	1 14	14	- 14		2 1	3 14	1 13	2 44		11	12	14		13	12	. 13	<i>,</i>
24	611702	11	13	/ I	1 1	3	10 1	1 14	· 11 (44	14		2 1	2 14	1 13	2 11	41	11	13	14	14	13	12	. 12	-
20	011/00	44	13		1 1	3	10 1	1 14	- 11	14		2 1	3 12 (2 4)	1 13	2 44		11	13	14	14	13	12	. 12	-
20	011/04	11	13			3	12 1	0 I0		14		2 1	2 14	1 13) 11		14	13			13	12	. 12	-
27	011/54	11	13	/ 14	4 1	J]	10 1	1 14	11	14	1	Z 1	Z 1/	1 13	J 11	11	14	11	14	11	13	12	. 12	4

The marker data file used in this example is available on the workshop URL: <u>http://pbgworks.org/tomato-workshop</u> (file name: STRUCTURE_InputData.txt)

Burnin length: how long to run the simulation before collecting data to minimize the effect of the starting configuration (Recommendation: 10,000 ~100,000)

MCIC length: how long to run the simulation after the burnin to get accurate parameter estimates (Recommendation: 500,000~1,000,000)

Inference of best K (number of populations)

 \odot The log likelihood for each K, Ln P(D) = L(K)

Two approaches to determine the best K

1. Use of L(K): When K is approaching a true value, L(K) plateaus (or continues increasing slightly) and has high variance between runs (Rosenberg et al. 2001, Evanno et al. 2005).

⇒ nonparametric test (Wilcoxin test)

2. Use of an ad hoc quantity (ΔK): Calculated based on the second order rate of change of the likelihood (ΔK) (Evanno et al. 2005). The ΔK shows a clear peak at the true value of K.

 $\Rightarrow \Delta K = m([L"K])/s[L(K)]$

A. L(K)

Evanno et al. 2005. Molecular Ecology 14: 2611-2620

Structure

File Project Parameter Set Plotting View Help

🖪 🕼 🔨 🎦 💥 🧶 🕼 🖄															
Project - T1		Summary o	of Project T1												x
Project Data		File													
Project Information	=							6 m 1							_
Simulation Summary					\frown		Su	mmary of Simula	itions						
🖃 🌗 Parameter Sets															
🖻 ·· 🍌 500000		Parameter	Run Name	K	Ln P(D)	Var[LnP(D)]	01	Fst_1	Fst_2	Fst_3	Fst_4	Fst_5	Fst_6	Fst_7	
Settings		500000	500000_run_9	4	-3278.6	206.2	0.2052	0.3857	0.4197	0.6008	0.2779	-	-	-	
🖻 🕌 Results		500000	500000_run_8	4	-3279.7	207.8	0.2056	0.2752	0.4202	0.3860	0.6039	-	-	-	Ξ
500000_run_100 (K=8)		500000	500000_run_7	4	-3277.9	204.8	0.2047	0.5993	0.3861	0.2764	0.4203	-	-	-	
500000_run_101(K=9)		500000	500000_run_6	4	-3279.0	206.8	0.2052	0.4188	0.6014	0.3874	0.2763	-	-	-	
500000_run_102 (K=9)		500000	500000_run_5	4	-3278.7	205.8	0.2046	0.2757	0.3860	0.4199	0.6002	-	-	-	
500000_run_103 (K=9)		500000	500000_run_4	4	-3279.1	207.0	0.2043	0.3842	0.5991	0.2756	0.4204	-	-	-	
500000_run_104 (K=9)		500000	500000_run_3	4	-3279.6	208.0	0.2060	0.6010	0.2762	0.3868	0.4202	-	-	-	
500000_run_105 (K=9)		500000	500000_run_2	4	-3279.0	06.9	0.2045	0.3843	0.6003	0.4195	0.2769	-	-	-	-
500000_run_106 (K=9)		500000	500000_run_20	-	-3280.8	10.4	0.2047	0.5984	0.2766	0.3868	0.4198	-	-	-	-
500000_run_107(K=9)		500000	500000_run_1		-3278.8	06.3	0.2051	0.4198	0.2768	0.6013	0.3864	-	-	-	-
500000_run_108 (K=9)		500000	500000_run_19		-3278.5	06.0	0.2041	0.5977	0.3862	0.4193	0.2777	-	-	-	-
500000_run_109 (K=9)		500000	500000_run_18	4	-3278.3	04.9	0.2047	0.4190	0.6000	0.2746	0.3856	-	-	-	-
500000_run_10 (K=4)		500000	500000_run_17	4	-3278.5	205.7	0.2039	0.4193	0.5983	0.3855	0.2763	-	-	-	-
500000_run_110 (K=9)		500000	500000_run_16	4	-3280.1	209.1	0.2051	0.5992	0.3861	0.4203	0.2767	-	-	-	-
500000_run_111(K=9)		500000	500000_run_15	4	-3279.4	207.5	0.2059	0.4196	0.2770	0.6027	0.3875	-	-	-	-
500000_run_112 (K=9)		500000	500000_run_14	4	-3279.4	207.4	0.2051	0.4187	0.3867	0.2751	0.6023	-	-	-	-
500000_run_113 (K=9)		500000	500000_run_13	4	-3279.2	206.9	0.2055	0.4193	0.3863	0.2768	0.6024	-	-	-	-
500000_run_114(K=9)		500000	500000_run_12	4	-3278.8	206.1	0.2048	0.5975	0.2769	0.4198	0.3849	-	-	-	-
500000_run_115 (K=9)		500000	500000_run_11	4	-3279.9	2	0.2044	0.4187	0.2748	0.3849	0.6022	-	-	-	
500000_run_116 (K=9)		500000	500000 run 10	4	3279.4	20.7.6	0.2060	0.2757	0.3890	0.4195	0.6033	-	-	-	•
500000 run 117 (K=9)	-						•		111					•	

Log likelihood values

EN 🕐 🛱 🔺 📑 🏴 .iil 🌒 9:05 PM 10/26/2010

Inference of best K using the delta K method

	5	ب ا						-	-	The best K a	nalysis -	Microsoft	Excel			-	_	
Paste	Home	Painter	Page Layo Calibri BB I U	vt T	Formulas	Data	Review	View	/rap Text lerge & Cent	er + S +	ral %,	▼ 00. 00. 0.€ 00.	Conditional Formatting * a	Format Co s Table * Styl	ell Inse	ert Delete Fi	∑ AutoSu	m -
	D10		-	f.	*2			argranera			Humber	<u>.</u>	J	cyres -		CC03	1.	Curt
Common Co	P18	• (1x										1	_			
	A B	С	D	E	F	G	Н		J	K	L	N	1 N	0	P	Q	R S	
1	V			V	1.(12)	Stdov		1."(12)	ניעי וו	Dolta K	ſ							
2	14	-3278	6	۲ ۸	-3279 14	0 68077		L (N)	[L N]	Deita K		14			The	hae	F K – 8	
4	24	-3279	.7	5	-3221 0.14	13 87348	58 11	-34.6	34.6	2 493966		12 -	\ `			, 003		
5	34	-3277	.9	6	-3197.52	17.41567	23.51	-22.705	22.705	1.303711		10	/					
6	44	-327	79	7	-3196.71	44.95482	0.805	31	31	0.689581		10						
7	54	-3278	.7	8	-3164.91	5.927498	31.805	-77.76	77.76	13.11852		8						
8	64	-3279	.1	9	-3210.86	61.8554	-45.955	-143.045	143.045	2.312571		6		+			Series1	
9	74	-3279	.6	10	-3399.86	52.43314	-189	104.2	104.2	1.987293		4						
10	84	-327	79	11	-3484.66	56.18421	-84.8	49.195	49.195	0.875602								
11	94	-3280	.8	12	-3520.27	74.40753	-35.605	27.065	27.065	0.36374		2	\sim			~		
12	10 4	-3278	.8	13	-3528.81	88.5478	-8.54	5.855	5.855	0.066122		o —			1 1			
13	11 4	-3278	.5	14	-3531.49	67.59166	-2.685	-78.96	78.96	1.168191		5	678	9 10 1	L1 12 13	3 14 15		
14	12 4	-32/8	.3 E	15	-3613.14	68.03	-81.645	81.645	81.645	1.200132								
15	13 4	-32/8	.5 1	_														
17	15 4	-3279	.4											-				
18	16 4	-3279	.4	+	L(K)	= an	ave	rade	of 20) valı	ues	of	Ln P(D			1		
19	17 4	-3279	.2	-			(17)		<u></u>			• • •	(/		-0		
20	18 4	-3278	.8		Ľ(K)) = L((K) _n -	- L(K) _{n-1}				-					
21	19 4	-3279	.9		I "/K	_	'/K	_ 1 7	K /			The	Excel f	ile use	ed in	this e	xample 1	S
22	20 4	-3279	.4) = L	· (r) n	(~/ n-1			01/01	labla ar	than	uorla	hon I		
22	1 5	2016	5		Delta	a K =	: [L"(K)]/S	Stdev	•		aval.	ladie of	i the v	VOFKS	snop (KL:	
							- •					<u>http:</u>	//pbgw	orks.c	org/to	mato-	worksho	p
												(file	name: '	The b	est K	analy	(sis.xls)	

Structure

File Project Parameter Set Plotting View Help

Google 🔏 🚞 🛜 🔯 🚺 🖉 🗮 😫

SAS codes

```
%macro Mol(mark);
proc mixed data = three;
class & mark gen rep;
model T1 = pop1 pop2 pop3 pop4 pop5 pop6 pop7 pop8 &mark /
solution;
random gen rep;
                                      JW
%mend:
                                                               Markera
         %Mol(M1);
         %Mol(M2);
         %Mol(M3);
         %Mol(M4);
run;
                        The SAS code used in this example is available on the
                        workshop URL: <a href="http://pbgworks.org/tomato-workshop">http://pbgworks.org/tomato-workshop</a>
                        (file name: SAScode.txt)
```

Summary

- STRUCTURE is a useful tool to detect population subdivision
- The use of the Q-matrix can correct for subpopulations during association analysis in breeding populations; avoids detection of false-positives
- The SNP resources from SolCAP are a powerful survey tool; we should be thinking beyond bi-parental populations toward analysis of complex breeding populations